
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-06-01

A Framework for the Performance Analysis and
Tuning of Virtual Private Networks
Fridrich Shane Perez
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Science and Technology Studies Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Perez, Fridrich Shane, "A Framework for the Performance Analysis and Tuning of Virtual Private Networks" (2018). All Theses and
Dissertations. 6867.
https://scholarsarchive.byu.edu/etd/6867

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6867&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarsarchive.byu.edu%2Fetd%2F6867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6867?utm_source=scholarsarchive.byu.edu%2Fetd%2F6867&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

A Framework for the Performance Analysis and

Tuning of Virtual Private Networks

Fridrich Shane Perez

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dale C. Rowe, Chair
Chia-Chi Teng

Derek L. Hansen

School of Technology

Brigham Young University

Copyright © 2018 Fridrich Shane Perez

All Rights Reserved

www.manaraa.com

ABSTRACT

A Framework for the Performance Analysis and
Tuning of Virtual Private Networks

Fridrich Shane Perez

School of Technology, BYU
Master of Science

With the rising trend of personal devices like laptops and smartphones being used in

businesses and significant enterprises, the concern for preserving security arises. In addition to
preserving security measures in outside devices, the network speed and performance capable by
these devices need to be balanced with the security aspect to avoid slowing down virtual private
network (VPN) activity. Performance tests have been done in the past to evaluate available
software, hardware, and network security protocol options that will best benefit an entity
according to its specific needs. With a variety of comparable frameworks available currently, it is
a matter of pick and choose.

This study is dedicated to developing a unique process-testing framework for personal

devices by comparing the default security encryptions of different VPN architectures to the
Federal Information Processing Standards (FIPS) set of complying encryptions. VPN
architectures include a vendor-supplied VPN, Palo Alto Networks, open-sourced OpenVPN
application, and a Windows PPTP server to test security protocols and measure network speed
through different operating platforms.

 The results achieved in this research reveal the differences between the default security
configurations and the encryption settings enforced by FIPS, shown through the collected
averaged bandwidth between multiple network tests under those settings. The results have been
given additional analysis and confidence through t-tests and standard deviation. The
configurations, including difficulty in establishing, between different VPNs also contribute to
discovering OpenVPN under FIPS settings to be favorable over a Palo Alto firewall using FIPS-
CC mode due to higher bandwidth rate despite following the same encryption standards.

Keywords: VPN, FIPS, security protocol, encryption, network security, bandwidth, performance,
framework

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to express my gratitude to the BYU IT faculty for their patience and

assistance in guiding me through my studies in the graduate program. I want to thank Dr. Dale

Rowe and the BYU Cyber Security Research Lab for providing the workspace, machines, and

additional resources to use for my research, as well as the support and morale they’ve shared. I

want to give recognition to Palo Alto Networks’ sponsorship for the CSRL and allowing use of

their resources for this endeavor. Lastly, I want to thank my family for their constant moral

inspiration and encouragement in pursuing continuous learning.

www.manaraa.com

iv

TABLE OF CONTENTS

TABLE OF CONTENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1 Introduction ... 1

 Background & Motivation ... 1

 Objectives / Goals .. 4

 Problem Statement / Hypotheses.. 5

 Methodology .. 6

 Delimitations / Assumptions .. 8

 Glossary .. 9

2 Literature Review .. 11

 VPN Security Protocols ... 11

 VPN Applications .. 13

 Commodity Hardware & Frameworks ... 15

 Performance Testing .. 17

 Encryption Algorithms ... 21

3 Methodology .. 24

 RO-1: Framework Development and Testing .. 24

3.1.1 Network Performance Testing .. 26

3.1.2 Network Measuring Tools .. 27

3.1.3 Framework Arrangement .. 29

 RQ-2: Determining Differences ... 30

www.manaraa.com

v

3.2.1 Network Traffic Monitoring ... 31

3.2.2 VPN Infrastructure Settings .. 34

 RH-2: Bandwidth Differences .. 42

3.3.1 Device Information ... 42

3.3.2 Tuning Factors .. 43

4 Results & Analysis .. 46

 Data Collection ... 46

4.1.1 Fixed Transfer Bandwidth .. 47

4.1.2 Windows Client Results .. 48

4.1.3 Mac Client Results .. 51

4.1.4 Android Client Results .. 55

 Framework Analysis .. 59

4.2.1 Limitations .. 60

4.2.2 VPN Traffic Explanation .. 61

4.2.3 FIPS Application ... 69

4.2.4 Framework Validation .. 69

5 Conclusion & Future Work ... 71

 Future Research .. 72

5.1.1 Linux Involvement .. 72

5.1.2 Automated Tests ... 73

 Observations ... 74

References ... 75

www.manaraa.com

vi

Appendix A. OpenVPN Server Configured Files ... 79

Appendix B. Security Onion /etc/network/interfaces File .. 95

www.manaraa.com

vii

LIST OF TABLES

Table 4.1: Fixed Transfer Results ... 47

Table 4.2: Windows Client Iperf Results with No VPN ... 48

Table 4.3: Windows Client Iperf Results Using Palo Alto VPN .. 49

Table 4.4: Windows Client Iperf Results Using OpenVPN ... 50

Table 4.5: Windows Client Iperf Results Using Windows Server VPN (PPTP).......................... 51

Table 4.6: Mac Client Iperf Results with No VPN ... 52

Table 4.7: Mac Client Iperf Results Using Palo Alto VPN .. 53

Table 4.8: Mac Client Iperf Results Using OpenVPN .. 54

Table 4.9: Mac Client Iperf Results Under Windows Server VPN (PPTP) 55

Table 4.10: Android Client Iperf Results with No VPN ... 56

Table 4.11: Android Client Iperf Results Using Palo Alto VPN .. 57

Table 4.12: Android Client Iperf Results Using OpenVPN ... 58

Table 4.13: Android Client Iperf Results Using Windows Server VPN (PPTP).......................... 59

Table 4.14: T-Test Significant P-values ... 63

Table 4.15: Standard Deviations for Clients' Iperf Results Using No VPN 65

Table 4.16: Standard Deviations of Palo Alto Iperf Results ... 66

Table 4.17: Standard Deviations of OpenVPN Iperf Results ... 67

Table 4.18: Standard Deviations of Windows Server PPTP Iperf Results 68

www.manaraa.com

viii

LIST OF FIGURES

Figure 1-1: Prototype Methodology Diagram ... 7

Figure 3-1: Flowchart of Framework Prototype ... 26

Figure 3-2: Iperf Client and Server Interaction ... 28

Figure 3-3: FAVE Framework Detailing Basic Relations Between Endpoints and VPNs 30

Figure 3-4: Example of Windows Iperf Client Agent Connected to Active Server Agent 32

Figure 4-1: Fixed Transfer Results Graph with Standard Error Bars ... 62

Figure 4-2: Collected Iperf Results Graph with Standard Error Bars ... 62

www.manaraa.com

1

1 INTRODUCTION

 Background & Motivation

 Networks, especially those belonging to high-earning businesses and significant

enterprises, are compromised often due to interference by third party attackers. Virtual Private

Networks (VPNs) are high in demand among enterprises as a VPN can protect an organization’s

sensitive data through its use of security protocols, making it the preferred method of connecting

remote data centers together. A VPN is essentially an extension of an organization’s private

network for remote users to join and provide the intranet to link branch offices to the enterprise

network. The ability to provide a secure connection remotely is the key factor of any satisfactory

VPN. To be successful, VPNs must be configured and managed correctly. For example, an

organization implementing an Internet Protocol security (IPsec) VPN through Cisco devices

would need to know how to resolve an out of order configuration with solutions such as enabling

NAT-traversal or even testing the connection with a ping to figure out what to do next.

 The devices that connect to the VPN play a major role in adhering to security

configuration, such as if their prewritten operating coding would allow the VPN connections to

either perform optimally or hinder it. There are two types of devices to be aware of in a work

setting. The first type of device is the out-of-the-box default, in which the device’s internal

scripts and operating system has been preconfigured to operate solely to the standards of its

designated work environment. This type of device is typically fresh out of the manufacturer’s

www.manaraa.com

2

box with only the basic applications and background processes running upon startup. The second

type of device is coined as Bring Your Own Device (BYOD). BYOD is self-explanatory, in

which a worker uses his or her personalized laptop or smartphone for work purposes. A BYOD

may not be appropriately accustomed to the workplace’s network due to different purposes and

scripting. For example, a user might have social media apps running in the background of his

personal computer, which would drain CPU resources and indirectly slow down productivity. As

such, the differences between a BYOD and a device programmed strictly for enterprise purposes

are shown through their respective network performances.

 VPN design is based on the security tunneling protocol a VPN implements. Security

protocol is one choice a VPN administrator needs to make. The following protocols are three

common choices: IPsec, Secure Sockets Layer (SSL), and Point to Point Tunneling Protocol

(PPTP).

 IPsec is a security protocol designed to authenticate and encrypt IP packets during

communication sessions between network devices. It ensures authentication integrity and

confidentiality through two protocols, Authentication Header (AH) and Encapsulation Security

Payload (ESP). The AH protocol provides data authentication and integrity through encryption

algorithms like HMAC-SHA and HMAC-MD5. AH also authenticates IP packet headers and

their payloads. The ESP protocol functions similarly to the AH protocol in providing data

authentication, as well as confidentiality through encryption, but it only authenticates the IP

datagram portion of an IP packet. IPsec operates on layer 3 of the OSI model.

 SSL is a security protocol that basically provides a secure communication channel

between a network machine and an Internet site host. It is recognizable as the “https” prefix in a

URL on a web browser address bar. SSL uses an encryption algorithm to encrypt both the link

www.manaraa.com

3

and the traveling data, preventing the latter to be easily read by eavesdroppers and packet sniffers

as plaintext.

 PPTP is a legacy VPN protocol regarded for implementing a basic point-to-point

tunneling mechanism as its security measure. It is often selected as the default security protocol

despite its known security issues of not having its own encryption and authentication standards.

PPTP is valued because of its low overhead, making it a fast-operating protocol compared to

other security protocols, whose encryption and authentication processes incur overhead and

cause the network to perform slower as a result. The missing security issue is remedied with the

Microsoft Point-to-Point Encryption (MPPE) protocol. However, IPsec was developed as a

relatively better alternative for VPNs with having the benefits of high speed performance and

sufficiently strong security settings. Nonetheless, PPTP is included within this small list of

protocols for comparison purposes.

 This thesis develops a framework system for measuring the network performance of

different endpoint devices connecting to different VPNs within an isolated local network

environment by comparing the default protocol settings each VPN uses to the encryption settings

defined by the Federal Information Processing Standards (FIPS), specifically FIPS 140-2:

Security Requirements For Cryptographic Modules (Caddy, 2005). FIPS are publicly announced

cryptographic module standards developed by the United States federal government for use in

computer systems in non-military government agencies and government contractors. FIPS

computer systems to use a strict set of encryptions such as SHA.

In this research, framework is defined as a testbed environment demonstrating the

processes between a client device connecting to a server under different VPN settings. The

framework is validated by the following configurations and actions. The VPN architectures

www.manaraa.com

4

would be from Palo Alto, a proprietary software, OpenVPN, an open-source application, and a

Windows Server utilizing PPTP. Default settings for each VPN are compared against active FIPS

settings. Network performance tests are performed through the iperf network tool, in which the

interval, transfer size, and bandwidth serve as measurement units. The iperf server endpoint is set

upon a Windows desktop. The comparisons are done under separate devices with Windows, Mac,

and Android serving as the client endpoints. The tests are going to be conducted under these

configurations to determine consistency between FIPS and non-FIPS settings and how much

influence the results have on network security and speed performance. In addition, using iperf

and the network router interface of the gateway router, fixed transfers of 100 MBytes are

performed beforehand on each VPN setting as a solid baseline defining overhead from bytes per

frame.

 The results of this study provide the insight needed to confirm the direct relationship of

the effect of active encryption policies on VPN network bandwidth and ultimately validate the

tuning framework for future use. Depending on how the accumulated performances results differ

against that of the fixed transfers, pending analyses can determine if significant deviances from

the baseline are the result of system background processes or encryption overhead.

 Objectives / Goals

 The main objective of this study is to determine network tuning parameters by producing

a framework measuring performances of different VPN types within an isolated local network

environment by comparing the default protocol settings each VPN uses to FIPS-defined settings.

The VPNs are individually defined by three known tunneling protocols: IPsec, SSL, and PPTP.

www.manaraa.com

5

The first two protocols are utilized in two different infrastructures: IPsec in an enterprise VPN

technology and SSL in an OpenVPN server.

 From the performance analyses, network metrics such as bandwidth sent over a fixed

transfer of data through the iperf network tool are going to be measured. For the sake of

simplicity, it should be noted that this network performance tool is open-sourced, available to

download and utilize in all involved operating systems. As for the secure protocols themselves,

they are implemented according to current default practices, specifically encryption algorithms.

The focus covers these protocols under different VPN infrastructures, in which case they are

used as the default protocol for their respective VPNs.

Additional factors to be considered on top of testing security performance include

measurement of device’s CPU and memory usage, bandwidth overhead, aggregate overhead,

policies set within the device, and loads to be used for performance testing. On top of

configuring security settings and strength, it would also be important to keep an eye out on these

factors if they demonstrate differences in network behavior during the trial run.

 Problem Statement / Hypotheses

 There are one research objection and one research question to be answered during this

undertaking. The main objective is to a prototype framework for evaluating a VPN configuration

based on the performance through the connecting personal devices. The research question

inquires of the differences between a VPN using FIPS-enforced encryption standards against its

default security settings. The corresponding hypothesis determines factors affecting potential

differences in bandwidth between VPNs using their default settings and FIPS-supported settings

to be the result of aggregating encryption overhead. These hypotheses ultimately direct the study

www.manaraa.com

6

in developing the appropriate secure VPN framework, such as how to make full use of default

options and which settings on the device require focused hardening modification.

• The development of the framework has best practice settings requiring a vendor-supplied

configuration of algorithm choice and settings. The settings are to be evaluated through a

series of performance tests as to determine a desired balance between network speed and

security.

• For this selection, default security options provided for each VPN architecture are

evaluated against a standard officially published and provided by the US federal

government.

• Differing bandwidth and transfer rates between FIPS and non-FIPS settings can be traced

back to factors like system CPU usage and encryption overhead.

 Methodology

 For this study, the computer platforms to be used for the testing were based from current

popular usage. The considered platforms include Windows, Mac, Android, and Linux. Windows

and Linux are the operating systems housing the featured VPNs as Palo Alto and OpenVPN

prominently run on the latter, with Palo Alto based on CentOS and OpenVPN able to be hosted

by Ubuntu Server, while the PPTP server can be set up on a Windows Server platform. The

VPNs operate as VMs in an ESXi environment stored in one machine, which is further explained

in the Methodology chapter. As for the factors involved with the VPN aspect, they have been

divided and categorized into three fields, which include VPN architecture, metrics to be

measured, and security protocols. See Figure 1-1 for the initial stages of the mapped

methodology for the framework.

www.manaraa.com

7

Figure 1-1: Prototype Methodology Diagram

The prototype methodology maps out the comparison of VPN infrastructures according

to secure tunneling protocols such as IPsec and SSL on their effect on network speed by running

performance analyses varying the settings of encryption algorithms and hardware configurations

to determine useful recommendations for improvement. Parameters involved in this research

www.manaraa.com

8

include bandwidth, CPU and memory consumption, current secure best practices, and type of

platforms and operating systems used.

 In addition, the methodology requires conducting thorough performance analyses for

each secure VPN protocol for readily available platforms with and without active security

settings. From the performance analyses, the network performance tool records transfer and

bandwidth at intervals of ten seconds. As for the secure protocols themselves, they are

implemented according to current practices, such as recommended encryption algorithms.

 Security settings considered within scope include protocols and changeable factors such

as encryption algorithm choice. Devices utilizing the network have been modified accordingly

and appropriately to conform to up-to-date security and speed standards. Differences between

bandwidth according to the transfer rate of packets reveal the incurred overhead as additional

enforcement.

 To measure network traffic with and without security settings, including FIPS-enforced

settings, the iperf network tool is to be used. The tool can measure the interval, transfer, and

bandwidth between devices. The results generated with it are compared with benchmarks

provided by the non-VPN connection as well as a fixed transfer file test. Four test categories

have been decided to be the following: one without defined security settings, one through IPsec

(Palo Alto), one through SSL (OpenVPN), and one through PPTP (Windows Server).

 Delimitations / Assumptions

Delimitation 1: The Palo Alto VPN is the only vendor-supplied VPN used in this research,

provided by the BYU Cyber Security Research Lab (CSRL). It represents the enterprise

applications factor for the framework.

www.manaraa.com

9

Delimitation 2: The above enterprise VPN is compared with OpenVPN, the only open-sourced

VPN server application to be used for this research, and with a Windows Server VM that has

PPTP VPN installed.

Delimitation 3: The Windows Server 2016 VM using PTTP has been installed by scratch, using

only its factory default settings. The only major configurations to be aware of regards the

installation of the PPTP server, configuration of its network adapters, and the capacity to toggle

FIPS settings on or off when appropriate.

Delimitation 4: One network performance test is a fixed transfer of 100 MBytes for each VPN

setting as to provide an additional overhead benchmark in comparing bandwidth differences on a

client.

Delimitation 5: Because the direction of this thesis involves the testing and tuning of VPN

settings through personal devices, Linux VMs are not required, but can be used for additional

data in need of extra clarification.

Assumption 1: Android, Mac, and Windows are the only operating systems to serve as the client

side of the framework while one Windows Server OS serves as the server agent.

Assumption 2: VPN security protocols are tested by their default settings prior to experimental

configuration. If default settings are not applied, the vendors’ published recommended approach

are to be followed.

 Glossary

Bring Your Own Device (BYOD) – A term used to define a user’s personal computer or

smartphone being used to handle work matters. Is used interchangeably with “personal device.”

www.manaraa.com

10

Framework – A structure defining an environment where a user can freely test integral

processes for analytical purposes.

Internet Protocol security (IPsec) – A protocol that authenticates and encrypts IP packets for

communication over the network.

Point to Point Tunneling Protocol (PPTP) – A common VPN protocol known for its

satisfactory speed performance because it lacks a defined security feature of its own.

Secure Sockets Layer (SSL) – A security cryptographic protocol that provides communications

security over a network. It is commonly used in certificates for web sites, verifying their

trustworthiness for communicating sensitive data through.

Virtual Private Network (VPN) – A private network enabling users to share and receive data

across a public network, such as the Internet, as though they are physically connected to the

network.

Federal Information Processing Standards (FIPS) – A set of public standards provided by the

United States federal government that strictly define information technology standards such as

encryption algorithms for use within non-military government agencies and government

contractors. Validated encryption algorithms used by FIPS 140-2 include AES, Escrowed

Encryption Standard, and Triple-DES symmetric keys, SHA family hashes, and asymmetric keys

DSA, RSA, and ECDSA.

www.manaraa.com

11

2 LITERATURE REVIEW

 A review of VPN protocols, performance tests conducted on VPNs and VPN-related

technology applications, hardware instructions for VPN usage, security approaches and

developments are explored in this literature review. Topics related to encryption algorithm

application, contributing to VPN security protocol strength and overhead effects on network

transfer rate, are also discussed.

 VPN Security Protocols

 VPN security protocols define the security strength and network speed functionalities for

devices communicating within the VPN area. There are protocols that define the tradeoff

between network speed and security, either specializing in one over the other or attempting to

achieve a balance between the two fields.

 A survey took note of particular differences between the PPTP and IPsec protocols in

how they provide secure communications within a VPN (Yadav, 2016). PPTP, developed by

Microsoft, is a widely supported VPN method for Windows platforms due to incurring the least

amount of overhead in its performance, which marks it as the fastest among VPN protocols. The

lack of overhead is due to PPTP not including a defined encryption/authentication feature on its

own. The remedy to PPTP’s missing encryption feature is the inclusion of the Microsoft Point-

to-Point Encryption (MPPE) protocol to provide the secure aspects of VPN connections.

www.manaraa.com

12

 By contrast, IPsec does not require another protocol to provide secure connections as it

already possesses an encryption feature. At the cost of its own strong security and usage of

encryption algorithms, IPsec suffers in incurring additional overhead and latency. Despite the

performance issue, the same survey establishes IPsec as the “standard” VPN solution over PPTP

with security being highly valued over speed performance.

 Even with network communications preserved and protected through IPsec, the standard

solution protocol has been tested with exploitation methods as to uncover any potential

vulnerability. One such exploit involves injecting IPsec tunnels with an abundance of data

packets in order to cause their gateways to reduce their tunnels’ Path Maximum Transmission

Unite (PMTU) and leave the network vulnerable to a Denial of Service (DoS) attack. This

exploit is called the Packet Too Big – Packet Too Small Internet Control Message Protocol

(PTB-PTS ICMP) attack. The networking world is not a stranger to DoS attacks as they are

frequently used to slow down services of an organization by the hands of rival competitors or

malicious attackers.

 One legacy method of mitigating DoS attacks within the range of IPsec tunnels is through

the Path Maximum Transmission Unite discovery (PMTUd) mechanism. There is, however, a

modified PMTUd algorithm that utilizes a packetization layer protocol with an

acknowledgement mechanism like Transmission Control Protocol (TCP) instead of relying on

ICMP (Roca & Fall, 2014). This method prevents DoS attacks by setting up automatic time-outs

in the event that such an attack is detected. However, PMTUd does suffer from the setback of

ICMP packets being filtered out by routers and firewalls on the way to the sender.

 In any case, IPsec is still considered for testing upon a variety of network architectures as

to evaluate its overall security effectiveness, such as implementations done upon Neighborhood

www.manaraa.com

13

Area Network (NAN) architectures to protect traffic communications (Aouini, Ben Azzouz, &

Saidane, 2016). NANs make up smart grids that manage electrical appliances inside their range.

Factors to consider in the IPsec-implemented NAN architecture design include dynamic data

exchange and monitoring smart meters that have limited computational capacity. This study

provides an evaluation framework for IPsec, and to an extension other VPN protocols such as

PPTP and SSL, by establishing the physical range of the network area and setting parameters

regarding network communications to measure.

 VPN Applications

 The application of a VPN technology for any organization is to ensure a secure network

connection for its users to share data with the organization’s private network. It stands to reason

that the main purpose for a VPN is to prevent sensitive data, such as bank accounts or passwords

for example, from falling into the wrong hands while at the same time to allow authorized users

to access the private network through their devices.

 An integral part of the VPN process involves optimal managing of tunnel performance in

the virtual architecture (Liyanage, Ylianttila, & Gurtov, 2016). Studies by Liyanage and

colleagues were done upon a similarly related network technology called Virtual Private LAN

Service (VPLS), wherein participants of the VPN are connected through a multipoint Ethernet

LAN connection. Tunneling mechanisms used in VPLS were described to be static, complex,

and inflexible in nature. These weaknesses resulted issues in scalability, overused network

resources, high delays, and high operational costs. A solution Liyanage proposed was to develop

a Software Defined Network (SND)-based VPLS architecture that includes new tunneling

mechanisms to remedy the vulnerabilities. The dynamic tunnel establishment mechanism and the

www.manaraa.com

14

tunnel resumption mechanism granted additional structure to the VPLS by keeping better track

of its tunnel manageability, allowing for smoother connection rates and significantly lowered

resource usage rates. The idea of implementing different mechanisms for better network

transition and communication is a concept to keep in mind in developing future best practices

applicable for a wide variety of devices involved in the architecture.

 Another field in VPNs that can be altered upon is authentication, wherein GPS

information with geo-privacy protection can be implemented to enhance authentication measures

(Jin, Tomoishi, & Matsuura, 2016). Users would correlate GPS with mobile devices upon

thinking about which device would be best suited to use for GPS technology. Known cyber-

attack methods, such as data breaching and Denial of Service (DoS), have commonly interfered

with organizations’ operations within their networks. Jin and colleagues utilized geo-privacy

protection to enhance VPN authentication by factoring in GPS information as an additional

security step on top of default VPN authentication and identification practices. Geo-privacy

protection mitigates the risk of GPS information leaks by registering a valid area based on GPS

information on the VPN authentication server and storing latitude and longitude coordinate bits

as authentication parameters. In their research, SSL VPN was used due to SSL’s design being

better suited for personal user remote access compared to other formats like IPsec or PPTP. Jin’s

research and trial run on using geo-privacy protection was marked to be successful, wherein hit

rates corresponding to latitude and longitude bits neared one-hundred percent and the overall

project has been opened for future work, preferably on RADIUS server. The concept from this

research inspires additional security-hardening methods not commonly found through most

organizations, in which the standard use of firewalls and tunneling protocols suffice in ensuring

secure network communications.

www.manaraa.com

15

 Following the lines of VPN application on mobile technology, there have been standards

devised to utilize mobile devices and BYODs more frequently in the workplace based off of a

survey regarding mobile VPN technologies (Alshalan, Pisharody, & Huang, 2016). Alshalan and

colleagues’ research on mobile security highlights the factor of technology evolution with the

increase of BYODs used in the workplace. To adapt to the growing popularity of personal device

usage, Alshadan’s team used data from their survey, which was addressed to general IT and

security professionals, to develop an explicit standard for mobile VPNs. Mobile VPN solutions

such as Border Gateway Protocol (BGP) / Multi-Protocol Level Switching (MPLS)-based VPNS

and mobile IPv4 IPsec VPNS were highlighted for the survey to place emphasis on creating a

mobile VPN standard. Following the survey and data analysis, Alshalan and colleagues found

that mobile VPN based on MIPv4 and IPsec as proposed by the IETH is the most consistent

according to the desired criteria for secure mobile devices in private networks. Ultimately, the

research was meant for readers to understand the technical backgrounds and open issues of

mobile VPNs to inspire future work and research to develop a structured methodology and

design VPN solutions that can resolve said open issues. The open issues include Software

Defined Network (SDN)-enabled mobile VPN, application persistence, lightweight VPN tunnel

resumption, VPN tunnel handover, detection of network disruption, and battery consumption &

Network Address Translating (NAT)-ing proxies.

 Commodity Hardware & Frameworks

Depending on the extent of an organization’s security needs, certain aspects pertaining to

a VPN should be configured accordingly. Such aspects include software, hardware, and a set of

protocols for network communications to follow. However, there are also the devices, ranging

www.manaraa.com

16

from personal computers to mobile devices, that utilize the VPN to consider if an organization

wants to optimize network speed and performance for involved users.

The functionality for a network infrastructure can be highly efficient even with

commodity hardware when arranged appropriately (Raumer, Gallenmuller, Emmerich, Mardian,

& Carle, 2016). A study with commodity off-the-shelf (COTS) servers was performed with the

intent of proving that such hardware can match the performance levels of high-end expensive

networking hardware while keeping external hardware costs low and manageable. For this study,

Raumer and team tested Network Interface Controller (NIC) offloading with two Intel 10 GbE

NICs, which were Intel X540 and Intel 82599. These NICs were ideally within parameters for

the research due to their support of IPsec encryption and authentication up to 1024 different

security associations in each direction, as well as up to 128 IP addresses at the receiver side.

Following a series of network performance tests to determine the true capabilities of COTS

hardware, Raumer and colleagues found the results as positive. A contributing factor to the

success of proving commodity hardware matching high-end expensive equipment is the open

source device driver the Intel NICs used, which was based from the Data Plane Development Kit

(DPDK) and MoonGen traffic packet generators. In additional, while the idea of IPsec

capabilities working on NICs is nothing unfamiliar in the networking world, this research is

marked as the first case study to actively engage into testing hardware performances instead of

standard tunneling protocols with network performance parameters.

In addition to hands-on testing with commodity hardware selection, frameworks offering

faster alternatives to compensate for hardware limitations, such as packet rates given by 10 Gbit

Ethernet, were examined for the potential gain of reducing overhead and CPU-induced

bottleneck (Gallenmüller, Emmerich, Wohlfart, Raumer, & Carle, 2015). Existing software

www.manaraa.com

17

frameworks, namely netmap, Intel DPDK, and PF_RING ZC, were surveyed on Linux

networking for high-performance packet IO under the limitations of network bandwidth, CPU

cycle performance, PCI express bandwidth, and maximum transfer rate determined by Ethernet

standards. Like the previous study on commodity hardware, this research utilizes two 10 Gbit

NICs for packet handling. The three packet IO frameworks require modified drivers and share

the same techniques in packet performance, which include bypassing the default network stack,

relying on polling to receive packets instead of interrupts, and preallocating packet buffers at the

start of an application with no further deallocation and allocation or memory during execution of

an application.

Once the theoretical aspects of packet IO forwarding were established from existing

frameworks, measurement setup was focused on integral factors such as CPU cycles per packet

and throughput to compare the framework performances. This research discovered additional

factors that affect packet IO performance, which include cache influence, batch size influence,

and latency. Ultimately, large batch sizes were shown to increase performance and latency in

addition to the trade-off between queue sizes, concluding in DPDK and PF_RING’s superiority

over netmap in terms of these parameters. All things considered, it is a matter of proper

application of a framework through modified system interfaces that would allow high

performance rates while keeping in mind network interface limitation to avoid crashing it.

 Performance Testing

 To determine the effectiveness of software, hardware, and protocol implementation in

VPNs and general network architecture, statistics regarding network performance and traffic

need to be obtained for comparisons. Depending on the research question and problem

www.manaraa.com

18

statements supporting the inquiry, metrics and parameters can generally vary. However, most

network performance tests require the analysis of collected bandwidth and packet transfer rates

to verify or disprove speed between different software and hardware.

 A study was done regarding the interoperability concerning transition mechanisms

between IPv4 and IPv6 networks (Narayan, Ishrar, Kumar, Gupta, & Khan, 2016). Considering

how IPv4 has been used for over thirty-five years, making the change into IPv6 would not be a

quick and easy task. End to end network performance tests were conducted to determine the most

effective method of utilizing transition mechanisms developed by the Internet Engineering Task

Force (IETF) to allow an IPv4 network transition into the more advanced IPv6. Out of the three

discussed transition mechanisms, which are dual-stack, tunneling, and translation, the tunneling

mechanism was placed in focus for the testing. The performances were tested under Windows 7

and Windows Server 2012, as well as with and without PPTP and IPsec protocols active. It was

found that the 6to4 transition protocol is the faster and more reliable mechanism compared to

4to6 due to having significantly lower delay among consistently reliable results. In addition, 6to4

with IPsec produced the highest amount of TCP DNS throughput compared to the other three

combinations involving 4to6 and PPTP. Future work based from this study may include testing

on different platforms, such as Mac and even the Android mobile platform, to determine more

efficient systems combining speed and security.

 There is also the basis of understanding the performance differences in operating with

and without an active security protocol like IPsec, specifically on processing delays on

automated nodes for this study (Hirschler & Sauter, 2016). The research focusing on these

parameters tested within resource-limited devices using Intel and ARM-based architectures on

System on a Chip (SoC) hardware. The driving problem statement for this research was to

www.manaraa.com

19

provide feasible security features for automated smart grid applications as IPsec was originally

designed for IT environment, not automation networks. The transmission and receiving delays

were measured upon seven series, starting from normal IPv6 transmission before combining it

with two encrypting algorithms used in IPsec, which are Authentication Header (AH) and

Encapsulating Security Payload (ESP). On top of testing without IPsec, six different

combinations were made from the encryption algorithms through IPsec’s tunneling and transport

modes by testing both modes with AH, then ESP, and finally both combined. Collected test data

proved additional security features, namely the combined encryption algorithms, incurred more

overhead compared to plain IPv6 transmission. In addition, IPsec tunnel mode with encryption

algorithms incurs higher delays than transport mode under the same corresponding settings. As

for hardware, Intel has shorter transmission and receive delay ranges with the implementations of

AH and ESP compared to plain IPv6 than ARM.

 There is also a focus concerning the performance of IPsec, determining if hardware

implementations do affect speed (Rao, Newe, Grout, & Mathur, 2016). One study holds a claim

that hardware implementations on security algorithms provide high-speed and real-time

performance for applications like data integrity and confidentiality. Considering that IPsec is

computationally intensive to secure the transfer of data, this issue would warrant attention

involving the improving of its speed. An attempted hardware implementation involved a field

programmable gate array (FPGA) capable of dedicated operations that can provide more

consistent and higher performance statistics, at least when compared to software

implementations, with a SHA-3 encryption algorithm. The idea behind utilizing FPGA is that it

is considered as the best leading representation hardware devices of the modern era, shown with

significantly higher throughput compared to previous attempts.

www.manaraa.com

20

This research is notable for being the first published work showing hardware

implementation on IPsec without any soft-core processor involvement while permitting a major

SHA-3 contribution in the sense of using the algorithm to handle IPv4 datagrams through IPsec’s

transport and tunnel modes.

 Additional performance testing on IPsec, in an attempt to compare its throughput and

round-trip time (RTT) with that of SSL, has been done on a Windows 7 platform and 802.11n

WLAN (Kolahi, Cao, & Chen, 2013). Additional details in this performance testing include

comparing the Windows 7 and WLAN to open system and using Triple Data Encryption

Standard – Secure Hash Algorithm (3DES-SHA), and Advanced Encryption Standard – Secure

Hash Algorithm (AES-SHA). This performance testing show that IPsec VPN had the

significantly better throughput and RTT performance than SSL. While it is true that using strong

security settings lowers network performance and increases delay, IPsec had a maximum

decrease of 60.28% in TCP throughput compared to open system while SSL had a maximum

decrease up to 97.03%. In the same comparison to open system, bandwidth with IPsec dropped

50% while bandwidth with SSL dropped 96%. As such, network settings with IPsec won’t suffer

much delay or low throughput than with SSL, making IPsec the better choice in this scenario.

This research has opened itself up to future experimentation with other VPN technologies, such

as PPTP and L2TP, as well as the opportunity to utilize other operating systems like Linux in this

case study.

 Aside from individually testing software, hardware, and protocol options for private

networks, performance testing has allowed the capacity to appropriately modify enterprise and

campus-sized networks with Virtual Local Area Networks (VLANs) to control the broadcast

traffic and lessen the chance for congestions to occur (Ashraf & Yousaf, 2016). This can address

www.manaraa.com

21

an issue of inter-VLAN routing, wherein a host from one VLAN communicates to a host of

another VLAN through a forwarding layer-3 device. The issue is that security would be at a high

risk with the enterprise network segments being geographically dispersed to the extent that

outside unauthorized parties could take advantage of the congestions between segments and slip

into the network undetected. Security perspective of VLANs and inter-VLAN routing was

investigated through IPv6 protocol and IPsec tunneling, ultimately constructing a secure

architecture from evaluating these security measures. The IPsec virtual tunnel interface is created

through the “interface tunnel int-number” command while comparing IPv6 with IPv4

performance. The results of the traffic simulations are collected as round-trip delay (RTD) and

are compared under four situations: using a layer-3 switch with no security, using different

switches with no security, using different switches through IPsec transport mode, and using

different switches through IPsec tunneling mode. Running IPv4 with no security had consistently

low delay while IPv6 under IPsec tunneling mode achieved low delay almost reaching the former;

both results utilized different switches. For the sake of overhead efficiency and security, it is

concluded that IPv6 routing with IPsec tunnel mode would be the ideal method to implement in

an IPsec VPN.

 Encryption Algorithms

The functionality of a security protocol relies on its capacity to utilize encryption

algorithms to encode data to the point that intruding outside parties cannot decipher the

communication. There is a tradeoff between speed and security concerning encryption

algorithms as the more computationally intense they operate in securing date, the slower the

system communicates.

www.manaraa.com

22

 For the most part, security is highly favored regardless of intensity or complexity,

especially for a system that is willing to entertain the idea of a multi-phase encryption technique

in place of typical algorithms like Advanced Encryption Standard (AES) and Blowfish on top of

traditional VPN security settings (Singh & Gupta, 2016). The purpose for increased complexity

aside from strengthened security is to prevent data tampering in case a compromised link occurs

in the network.

 AES has been performance tested on a 2010 Intel Core processor due to previous

research finding the correlation between the AES cipher behavior and processor core scaling

(Uskov, Byerly, & Heinemann, 2016). Hardware acceleration and a set of new instructions (NI)

written for AES that can execute under significantly fewer clock cycles than a software solution

provided the test settings needed to compare with AES under default settings in the same Intel

architecture. This testing of AES-NI involves running AES with RMM ready-to-be-streamed

files of sizes 100 MB, 200 MB, 500 MB, 1000 MB, and 2000 MB with the AES-NI instructions

enabled and disabled. Lastly, the AES cipher operations are divided into five different modes,

which are CTR, ECB, CBC, CFB, and OFB. These AES modes are what would define the final

results of the performance analysis, determining which one would work the most efficiently or

had the best median. Following the testing on the AES-NI hardware acceleration, the research

concludes that the AES-ECB mode had the best median performance out of the five AES modes

with AES-NI enabled. Also, with AES-NI disabled but still running with the same Intel hardware,

AES-CTR gained the best median performance, but was still beaten by ECB mode. However, the

findings do not recommend using ECB mode for secure VPN networks as it cannot completely

hide encrypted data patterns, and as such, recommend CTB mode instead as CTB mode had the

second-best performance in AES-NI enabled mode.

www.manaraa.com

23

 There is also the concept of implementing encryption and decryption algorithms through

graphics processing unit (GPU) technology (Heinemann, Chaduvu, Byerly, & Uskov, 2016). By

correlation, the use of OpenCL and CUDA software platforms, the latter specifically integrating

with NVIDIA GPU technology, would entertain the idea of additional effects software

implementations place upon the efficiency of encryption and decryption. This concept would

then extend to how the changes in algorithm behavior could be affecting secure network traffic

performance, such as if the enhanced complexity is slowing down the communication rate.

 As for FIPS-compliant algorithms, a case study was done in which a Triple Data

Encryption Algorithm (TDEA) was to be implemented in a FIPS 140-2 defined module (Barker

& Barker, 2012). Modes of operation for TDEA are specified by SP 800-38: Recommendation

for Block Cipher Modes of Operation. To qualify for compliance, TDEA was designed from the

preceding DEA specified in FIPS 46, effective July 1977 for the data protection of federal

agencies prior to withdrawal. The DEA cryptographic engine protected blocks of data consisting

of sixty-four bits under a sixty-four-bit key, the functions now implemented in TDEA. The

applications for TDEA were directed for environments requiring strong cryptographic protection,

but the testing for TDEA was formatted in a way that its implementations would depend on the

needs of the environment in question.

www.manaraa.com

24

3 METHODOLOGY

 This thesis focuses on one research objective and one research question:

 Research Objective 1 (RO-1): Develop and test a framework based on best practice

settings requiring a vendor-supplied configuration of algorithm choice and settings and their

effects on overall network performance.

 Research Question 2 (RQ-2): What are the differences between a VPN using FIPS-

validated encryption algorithms compared to its vendor-provided default security settings?

 Research Hypothesis 2 (RH-2): Differences between FIPS and non-FIPS settings are

found in bandwidth and bit transfer attributed to encryption overhead.

 The answers and processes for the above objectives are detailed by the following VPN

study framework, metric assessment, secure best practices, VPN configurations, and network

performance analysis methodology in this section.

 RO-1: Framework Development and Testing

The development for the framework began with the purpose of assessing the viability of

VPN security protocols and determining a correlation between their effect on network

performance. The practicability of VPN protocols using their default settings and encryption

algorithms would also be tested against FIPS-enforced encryptions. The concept behind this

framework is to determine the ideal security settings derived from a vendor-supplied

www.manaraa.com

25

configuration and apply appropriate changes either to the network setup or to the personal

devices using the VPN to allow optimal network speed and security performance. The intent

behind starting with default settings for VPN and personal device configurations is to build the

framework from scratch and branch off into a different direction than previous network

performance tests were used for. As such, this framework development project is simply

codenamed “FAVE,” an acronym for FIPS Application VPN Evaluation.

 Related existing frameworks on the topic were found, most of which are composed of

VPN architectures that performed comparisons on factors for hardware CPU and memory usage,

the strength between encryption algorithms, and selected platforms as described in the literature

review chapter. These factors were tested within a selected VPN infrastructure at a time. Despite

these findings, there was no specific framework that focused on testing the private network

reachability between different VPN security settings under the same platforms, or at least under

the VPN types and client devices used for this research.

FAVE has been developed from scratch due to a lack of sufficient existing frameworks

matching the direction of this research. The development consists of two parts, setting up the

VPN server and running network performance tests on a selected device within the VPN while

under a security protocol. The configurations for each VPN are bound to vary in time and in

setup methodology, which include either a few clicks to enable certain options or opening a

Terminal or Command Prompt interface to input needed lines to install or activate specific

processes. And as mentioned previously, the resulting network statistics are collected through the

iperf network tool, which is executed via Terminal or Command Prompt on both the client and

the server sides. See Figure 3-1 for an illustrated prototype of the framework’s processes in VPN

performance testing.

www.manaraa.com

26

Figure 3-1: Flowchart of Framework Prototype

3.1.1 Network Performance Testing

The general purpose for network performance tests is to evaluate traffic behavior and

determine factors that influence its transfer rate. For the typical user, he or she wouldn’t concern

themselves with the deeper and intricate details of network architecture that affect speed and

security if the user is able to connect to the desired destination address without issue.

The general process of performing a network performance test is simple and self-

explanatory. There exist tools, ranging from open-sourced to enterprise-created, that can simulate

network communication from one end to another by sending data packets to a destination IP

address and test the state of said communication. The receiving end would then respond with an

acknowledgement (ACK) signal if communication has been successfully established or a

www.manaraa.com

27

negative acknowledgement (NACK) if an error occurred that prevents the packet from being

received. There is a distinct difference between a packet being dropped in its path and being

rejected by the endpoint due to firewall settings, for example. From this, the network tool would

measure the time it took for the test packet to reach the destination and the rate that the packet

hops in between devices to reach the destination.

The framework prototype started with the idea of running performance analyses varying

the settings of encryption algorithms for each VPN under the same devices. There are four main

test scenarios: one without defined security settings, one through IPsec from Palo Alto

equipment, one through SSL from OpenVPN, and one through PPTP from a Windows Server

VM. The VPN scenarios are to undergo additional testing between using predefined encryption

settings and using FIPS-enforced encryption settings, reaching a total of seven tests for each

client endpoint. These factors have been incorporated into the framework’s final development.

3.1.2 Network Measuring Tools

 To test the network traffic, a tool is needed to measure and simulate the communicating

data stream from one end to the other. There were a variety of known open-sourced network

performance tools to select from that can get the job done as options included iperf, netperf,

nuttcp, and netpipe. Regarding scope and the capacity to measure network performance metrics,

these tools fit the basic qualifications for this research. Each one is capable of simulating data

streams through client and server agents, provided that both end points have the tool installed.

 For the performance analyses, it was decided that the network metrics would be recorded

through the iperf v2 tool. Iperf is a free and open-sourced network performance tool that is easy

to learn after a few trials of experimentation. It can measure the interval, transfer, and bandwidth

www.manaraa.com

28

between devices. However, there is a distinct difference between iperf v2 and the rewritten iperf3

as the latter is not backwards compatible. The reason that the lower version of iperf was selected

in consideration for the Android platform involved in this research. The iperf v2 tool was found

to be the only compatible and available network performance measuring tool for said platform.

As for netperf and netpipe, while they were found to be compliant with Linux and most

UNIX-based systems, there were no feasible applications of them for Windows and Mac. While

this restriction is not necessarily a bad thing, the restriction kept in mind that the tool needed

operate well in Windows and Mac. The additional requirement is that the tool is available for

Android, in which there exists an iperf app as mentioned above.

Figure 3-2: Iperf Client and Server Interaction

 In addition to selecting a pre-existing network performance measurement tool rather than

creating a tool with similar functionality, iperf was worked with mostly following previous

network-related projects, adding in the convenience of experience it provided. It was found that

developing methods to be best based from experience while learning about new tools and

technologies along the way in developing an effective methodology. The iperf tool is relatively

easy to utilize following download, simply by opening a Command Prompt or Terminal screen

www.manaraa.com

29

and executing the iperf command with the -s flag to open the iperf server agent on one device

while the -c flag uses the second device as an iperf client with the IP address the server client is

on accompanying the flag. Iperf results can also be outputted into a txt file by adding “>

[filename].txt” as part of the iperf command; it works for both the client and server commands.

Additional notes regarding iperf usage that should be known is that for this research, the iperf

client connects to the server via TCP port 5001 by default for all the involved platforms.

3.1.3 Framework Arrangement

The network map for this research was designed to operate separately and unaffected by

other network activity and traffic in the shared lab environment. The isolation would allow a

deeper study of the effects of VPN tunneling on network data packet transfer between server and

client. The main access point router in FAVE would only be hardwired to the Internet only in

cases that require outside resources, such as downloading tools and software patches. Otherwise,

the only machine the router would be wired is the ESXi environment containing the VPN VMs

while the client endpoints are permitted to connect wirelessly. The desktop server endpoint,

however, would be designated on a separate subnet to prevent the clients from circumventing the

VPN tunnels to connect straight to it. A fixed physical distance, d, is also established between

the client device and the wireless router to ensure that all clients use the same parameters during

the testing. See Figure 3-3 for visualization of the developed framework, including assigned IP

addresses for machines involved and the subnet range listed on the top left.

www.manaraa.com

30

Figure 3-3: FAVE Framework Detailing Basic Relations Between Endpoints and VPNs

The reason that the VPNs are to share the same local IP address is for ease of swapping

between VMs on top of consistency. Sharing the same IP address also maintains the integrity of

FAVE’s subnet assignments as altering a VM’s network interface tends to affect its behavior in

connecting with the rest of the network.

 RQ-2: Determining Differences

 To identify the probable difference in configuration between a vendor-supplied security

setting and a federal standard of validated encryption algorithms for a VPN infrastructure,

measurement parameters were decided to define obtainable variances. Measurement parameters

involved in this research include bandwidth, transfer rate, current secure best practices, and type

of platforms used.

 All participating devices, personal or otherwise, are to adhere to the same ethical and

behavioral standards. The Palo Alto firewall and OpenVPN VM setup would be built according

to the basic and necessary functionalities as recorded on official documentations. These VMs,

along with the Windows Server VM running a PPTP VPN, would be stored into a VMware ESXi

www.manaraa.com

31

hypervisor. As previously illustrated in Figure 3-3, the ESXi hypervisor manages the VMs,

permitting VMs to be active or suspended depending on which VPN requires testing during the

experimentation period.

However, to ensure the flow of network traffic pushes through the designated active

VPN’s tunnel, the VPN VMs have been configured to utilize the same static IP address and host

the default gateway for the desktop server in a spare virtual ethernet interface. Otherwise, due to

the arrangement of the isolated network, the iperf testing would circumvent the VPN tunneling to

reach the corresponding endpoint in the desktop server.

3.2.1 Network Traffic Monitoring

There are plenty of open-sourced network measuring tools and graphical user interfaces

(GUIs) available to select and perform the data gathering. However, as discussed previously, the

use of the iperf tool is enough to measure the likes of bandwidth and transfer rate for each VPN

connection the platforms participate in.

Iperf is open-sourced and versatile in its functionality, from allowing a finite number of

tested intervals to be performed consecutively to sending a file of a fixed number of bytes from

client to server. The server agent is active by executing the tool with the -s flag while the client

side is voluntarily activated by -c followed by the IP address where the active server is located.

The “-c <server address>” argument alone measures the bandwidth and transfer rate for an

interval of ten seconds by default.

www.manaraa.com

32

Figure 3-4: Example of Windows Iperf Client Agent Connected to Active Server Agent

Specifically, for this research, iperf tests are set to a minimum of twenty consecutive tests

with each interval measuring ten seconds each. The transfer rates from all intervals are added up

while the twenty bandwidth results are averaged. This iperf command is performed with

arguments “-t 200 -i 10” on the client side, in which the t flag defines the total length of time

while the i flag defines the interval length within the time total. To preserve the results from the

performance tests, iperf can export and save them if the “>” syntax is used at the end of the

command followed by the location and name of the file to save as, preferably into a simple txt

file.

To validate the collected data, fixed transfer tests of one-hundred megabytes are

performed at least once for each VPN setting with one client device to determine byte overhead.

The Windows 10 client would be used for this case. The fixed transfer test is done with the “-n

105000000” argument. The purpose for this iperf command is to help monitor the byte rate

traveling through VPN tunnels.

The actual packet monitoring would be performed through the interface of a ProLiant

DL165 G6 Basic SATA containing the SecurityOnion software; both the router and the ESXi

www.manaraa.com

33

box are hardwired to it. If setting up SecurityOnion for the first time, follow the production

deployment instructions available on the Security Onion wiki, starting with the standard “sudo

apt-get update” before installing the meta-package itself with “sudo apt-get -y install

securityonion-all syslog-ng-core”. The integral part to be able to monitor network traffic would

be configuring the /etc/network/interfaces file to build a bridge to listen from, as well as define

the two ethernets in use. See the Appendix B section for the exact configuration.

The packet monitoring and dumping is executed by tcpdump with the captured packets

saved into pcap files. The command used to measure most network streams is “tcpdump -i br0 -

w file.pcap”, wherein br0 is the bridge between ethernet connections, the ASUS Wireless Router

and the ESXi box, to listen traffic in.

Under a packet analysis software application, such as Wireshark, additional assurance

that the packet flow is forced over the VPN is guaranteed upon examining the pcap file’s data

conversations and checking the active ports. On Wireshark, load the pcap file, go to Statistics,

and select Conversations to view the port communications and number of bytes transferred. In

this case, TCP port 443 is highly sought after while the appearance of TCP port 5001, the default

port used by the iperf server agent to listen upon, would indicate the packets circumventing the

VPN tunnel and traveling to the destination directly through the isolated network instead.

Following the data gathering, appropriate comparisons would be drawn between

measurements respective to their fields before drawing conclusions on the best course of actions

of finding the optimal balance between network speed and security for personal devices

connecting to a VPN through hardening procedures and best practices.

www.manaraa.com

34

3.2.2 VPN Infrastructure Settings

The three different VPN infrastructures presented in this research are each running

separate security protocols, varying by encryption use and traffic regulation. With each VPN

defined differently by protocol, the tuning factors between their default security settings and

FIPS-applied encryptions should be carefully defined for clear results. Evaluating the

infrastructures individually before performing network tests would provide the insight,

understanding, and direction needed on developing a balanced application between network

speed and security from available configurations.

Palo Alto Networks uses GlobalProtect Gateway as its network security platform for

devices connected to its VPN while its firewall interface operates it from a distance. Its default

security protocol is IPsec. GlobalProtect uses IPsec Crypto Profiles to specify authentication and

encryption algorithms. The default algorithms for encryption from most-to-least secure are AES-

256-GCM, AES-128-GCM, and AES-128-CBC. The GlobalProtect agent is applicable for

Windows, Mac, Linux, and Android platforms. The VPN agent for Windows and Mac for this

project were available upon configuring the portal to an accessible IP address within the test

network environment. Lastly, there is an official GlobalProtect app available on the Google Play

Store by Palo Alto Networks for the Android to utilize. However, for the Android to connect to

the VPN through the app, the active Palo Alto firewall must be authenticated with a license key.

The ova file was provided for this project from the beginning, but no license key as its absence

won’t entirely affect the network performance of the VPN.

 The steps of configuring a Palo Alto firewall VM are straightforward upon learning

where to look for the necessary features to configure. The default credentials to access its web

GUI uses the word “admin” as both the username and password, but for a FIPS-CC move Palo

www.manaraa.com

35

Alto firewall, the password is “paloalto” instead. Many steps in setting the firewall are available

on the Palo Alto Network’s live community website, but the necessary steps to configure the

firewall are listed here.

 The firewall should be installed from a provided ova file into VMware ESXi or a similar

virtual machine hypervisor. Once the installation is finished, open the console to begin

configuring the VM by providing a static IP address to be used for the management interface. It

can be assigned 192.168.42.10 as the GlobalProtect portal is going to use 192.168.42.2. In the

console, enter configure mode by typing in “configure” and tapping the Enter button. Then enter

these following commands, substituting the tags with necessary information:

• set deviceconfig system type static

• set deviceconfig system ip-address <ip-address> netmask <netmask> default-gateway

<default-gateway> dns-setting servers primary <dns-servers>

• commit

• exit

Verify the network information with “show system info” before opening an Internet

browser and visiting the firewall’s GUI via the static IP address entered from the previous steps.

After logging in with the default credentials, the first simple step is to create self-signed chain of

certificates to use for security profiles for later configurations, as well as export to the Windows

and Mac clients to save as a trusted source. This is done by selecting the Device tab and clicking

the Certificate Manager on the side option bar. Select the Generate button below to begin

creating the root certificate; fill in the Certificate and Common Name fields, to check Certificate

Authority, and proceed to generate. The intermediate certificate follows the same steps except

the Signed By dropdown box should select the root certificate. Lastly, the server certificate to be

www.manaraa.com

36

used in the SSL/TLS Profile should have its Common Name specify the designated portal IP

address, which would be 192.168.42.2, not have the Certificate Authority box checked, and have

an IP = 192.168.42.2 Certificate Attribute field added for client devices to trust. Commit changes

frequently after making a significant addition or edit to the firewall configuration.

 The next major step in configuring the Palo Alto firewall would be to set up its virtual

ethernet interfaces so that one interface can serve as the GlobalProtect VPN portal while another

ethernet interface can operate as the 192.168.43.0 gateway for the desktop server. Beforehand,

two interface management profiles, one Layer 3 trust zone, and one virtual router should be

created for the virtual ethernets to use. These can all be found upon selecting the Network tab on

top while the options are found along the side menu. The trust zone can be created in the Zone

option with the only configuration outside of naming it is to select Layer 3 as its Type before

creating it. Starting with the Interface Management option, create a profile with permitted

services ping, ssh, https, and response pages and name it “allow-mgt”. Create a second profile

with only ping as the permitted service with the name “allow-ping” to signify its limited rights.

In the Virtual Routers option, create a virtual router with the only necessary configuration being

in the Static Routes tab. Add a static route for the virtual router to use by default, defining it with

IPv4 address 0.0.0.0/0 as the destination and using GlobalProtect portal address 192.168.42.2 as

the next hop.

 After creating the three services and committing the changes, select the Interfaces option

while still in the Network section of the Palo Alto firewall. Select a virtual ethernet, Ethernet 1/1

for example, to configure into the 192.168.43.0 gateway. This and the second ethernet, Ethether

1/2, are both Layer 3 types. Set the virtual router and zone to the router and zone created from

the previous steps. Input 192.168.43.1/24 into the IPv4 tab. On the Advanced tab, select “allow-

www.manaraa.com

37

ping” for the interface management before accepting the configurations. Perform the same steps

with Ethernet 1/2, but use 192.168.42.2/24 for the IPv4 section as this interface is to be used for

the GlobalProtect portal.

 The final major step is to configure the GlobalProtect gateway and portal, both located on

the side menu while in the Network tab. Create the portal by implementing the main interface to

be Ethernet 1/2 and its static IP range, 192.168.42.2/24 on the General tab. In the Authentication

tab, select the SSL/TLS Profile created earlier and create an entry for Client Authentication using

local authentication. Under the Agent tab, create the agent config; within the config window,

check the box to generate and accept cookies while setting the root certificate to encrypt/decrypt

the cookies. Go to Add External to input the portal IP address, 192.168.42.2. Lastly, go to App

and select “On-Demand” for manual portal login. The gateway configuration, located next to the

portal option on the side menu, follows the same configuration as the portal. The Agent tab for

the gateway, however, should have tunnel mode and IPsec enabled, add in the IP range

192.168.0.0 – 192.168.255.255 for Client Settings, and input a range in the IP pool for the

firewall to pull from for clients. The range can be provided in the 192.168.43.0 network, an

example being 192.168.43.20 – 192.168.43.50.

 Commit the changes for the configurations to take effect. To add a user to login to the

portal upon visiting 192.168.42.2 on a web browser, go to Device and select Local User

Database to manually add a username and password to login to the web portal. The portal page,

upon successfully logging in, allows GlobalProtect VPN agents for Windows and Mac to be

downloaded and used to connect to the VPN freely.

For a Palo Alto VM to switch from its normal organization mode to FIPS and Common

Criteria (FIPS-CC) support, the configuration must be done on the VM’s terminal on a VMware

www.manaraa.com

38

application, such as the ESXi’s main webpage or a console via the VMware vSphere Client

software. A precaution to note regarding switching to FIPS-CC mode causes the VM to reset to

factory settings, which is why a second Palo Alto firewall VM is recommended for this purpose

while alternating with the first firewall in normal mode during testing. The mode switch is done

by inputting “debug system maintenance-mode” into the console to boot up the Maintenance

Recovery Tool (MRT). The MRT interface then shows a selection of choices, one of which is to

set FIPS-CC mode. The process is overall straightforward and takes a few minutes for the change

to complete, depending on how much space within the virtual environment is available. Once

FIPS-CC mode is fully operational, it can be configured the same way as a normal mode firewall

can using virtually the same steps as mentioned.

Regarding the OpenVPN server, it was within scope to create it from scratch using an

Ubuntu Server 17.04 VM. The OpenVPN server is relatively easy to setup, given that there are

plenty step-by-step setup guides available online to follow, such as the guide provided by Digital

Ocean. Although the webpage recommended the setup for Ubuntu 16.04, it was still applicable

on the 17.04 version. OpenVPN openly supports SSL as its main implementation instead of

IPsec or PPTP due to portability, ease of configuration, and compatibility with NAT and

dynamic addresses. OpenVPN utilizes User Datagram Protocol (UDP) packets, which uses

checksums for data integrity but is otherwise connectionless as to reach the destination endpoint

without being slowed by handshakes and other overhead accumulating processes compared to

TCP. However, specific configuration can permit OpenVPN to use TCP port 443, the commonly

used port for secure tunneling. This OpenVPN also uses the AES-256 cipher instead of the AES-

128 the website recommends mainly because the base.conf file has the 256 cipher in place from

www.manaraa.com

39

installation. Check the Appendix section at the end for files to edit and configure for OpenVPN

use.

 For OpenVPN to utilize FIPS, OpenSSL and the FIPS Object Module are required as

they work conjointly. It would be best to build the OpenSSL module alongside the FIPS Object

Module as the former needs to be compatible for the latter to force the server to use FIPS-

approved encryption algorithms. The FIPS Object Module can be downloaded via the wget

command from the OpenSSL website and unpackage with the gunzip and tar commands:

• wget https://www.openssl.org/source/openssl-fips-2.0.16.tar.gz

• gunzip -c openssl-fips-2.0.16.tar.gz | tar xf –

Once the tar.gz file is unpackaged, enter the newly created openssl-fips-2.0.16 folder to

begin configuring the FIPS module (OpenSSL Software Foundation, 2017). Run the config script

in the folder to build up the module for the VM to use.

 Repeat the process in downloading an OpenSSL file from the same website, but with the

package openssl-1.0.2o.tar.gz instead when reusing the commands. The OpenSSL community

has stated that the 2.0 FIPS module is fully compatible with either the 1.0.1 or 1.0.2 versions of

OpenSSL, meaning it is safe to continue installing the module by running the config file

following its unpackaging. Upon full installation of OpenSSL, check the version the VM

environment is using with the “openssl version” command. If the system returns “fips” in its

version, example being OpenSSL 1.0.2o-fips 23 followed by the date of installation, then the

system can enable FIPS mode. Set environment variable “OPENSSL_FIPS=1” by the export

command; the 1 variable enables FIPS while 0 turns it off. The test to check that FIPS is working

under OpenSSL is to check the hash of a file with MD5 using the command “openssl md5

[file.txt]”. MD5 is not FIPS-approved, meaning the system should return an error setting the

www.manaraa.com

40

digest. SHA1, on the other hand, is FIPS-approved, meaning that the FIPS module is enforcing

the system as it should when enabled.

The applications of setting up the OpenVPN client endpoints differed with each platform.

Windows 10 required installing the client from the OpenVPN website, creating the config folder

in the C:\Program Files\OpenVPN file path, and utilizing a File Transfer Protocol (FTP)

application to drag the opvn file from the Ubuntu Server into the config folder. Mac OS required

the installation of the open-sourced Tunnelblick application to perform OpenVPN tasks and like

Windows, requires the opvn file to be dropped into Tunnelblick to establish the VPN connection.

However, in the context of this research, for Tunnelblick to accept the configuration file, the

ta.key file was required to be in the same directory as the dragged opvn file.

The process on Ubuntu Linux is straightforward via Terminal by typing in the “sudo apt-

get update” and “sudo apt-get install openvpn” commands. The opvn file, in this case, can be

dropped anywhere as long as the “sudo openvpn --config [filename].opvn” can be executed to

establish the connection. The Android platform has both the OpenVPN Connect and OpenVPN

for Android apps to be a suitable client to use the opvn file and successfully connect to the server.

It should be noted that the former requires the same instruction as Mac’s Tunnelblick in

including both the opvn file and the ta.key file in the same directory to allow the Android to

connect to the VPN server, at least within the parameters of this research, while the latter is able

to work with simply importing the opvn file alone.

Lastly, the VM running PPTP is installed through Windows’s Server Manager. The VPN

is installed through the Remote Access server role with the DirectAccess and VPN (RAS)

service. Upon installing the features, click on the following link for the Getting Started Wizard to

configure the server, starting with the Deploy VPN Only option. The Routing and Remote

www.manaraa.com

41

Access Management Console opens, wherein the newly deployed server’s configuration can be

customizable. The only service to enable in the customization is VPN access. Upon finishing the

steps and starting the Routing and Remote Access service, right-click on the server to access

Properties, head to the IPv4 tab, and add a range of IP addresses into the static address pool for

the VPN to assign clients with. Considering that the VPN VM is within the 192.168.42.0 subnet,

it is acceptable to input a static range within the 192.168.43.0 subnet.

 Enabling and disabling FIPS on Windows Server is also a straightforward process, done

by opening the Local Security Policy console and navigating on the side directory through Local

Policies and Security Options. In the Policy table, locate “System cryptography: Use FIPS

compliant algorithms for encryption, hashing, and signing” and right-click on it to access

Properties. Select Enabled or Disabled, apply the change, and restart the VM for it to take effect.

With PPTP as a legacy protocol, most devices can utilize it by registering the VPN

connection through a device’s respective wireless and network settings. One glaring exception to

this would be Mac’s capacity to cooperate with Windows applications. Certain Mac operating

systems, such as the macOS Sierra through later patches, have removed the option to form a

PPTP VPN connection due to PPTP’s lack of defined security settings. As a remedy to this issue,

there are VPN software available online, ranging from free open-sourced to purchasable

enterprise applications with free trial periods, that can permit the mentioned Mac OSs to form a

PPTP connection. Available applications include Flow VPN, Shimo, and VPN Tracker; Flow

VPN is free and open-sourced while the last two provide free thirty-day trial periods before

requiring a paid subscription to use all features.

www.manaraa.com

42

 RH-2: Bandwidth Differences

With FAVE’s development and the configurations to test for each VPN server, there is

the matter of understanding the underlying factors that affect the bandwidth and transfer rate

results. On top of testing network speed and connectivity between device endpoints for each

VPN server, security must be enforced on personal devices. The iperf results provide

benchmarks to determine the tuning parameters necessary in upholding the ideal balance

between speed and security.

3.3.1 Device Information

The following information relays the hardware and configurations used for this project in

forming the framework. The first half details the router, hard drives, VMs, and their

software/firmware configurations. The router serves as the default gateway for the 192.168.42.0

subnet, one hard drive hosts the VMware ESXi holding the VPN VMs, and a second hard drive

is set aside as the desktop hosting the iperf server agent.

• ASUS RT-AC68U Wireless Router, 5GHz, IP address 192.168.42.1

• HP ProLiant DL165 G6 Server Basic SATA with 4 Proliant DL165 G6 Storage Drives,

RAID 10, SecurityOnion Ubuntu 14.04.5

• Dell OptiPlex 9020 with 4 CPUs x Intel® Core™ i5-4670 CPU @ 3.40 GHz, 15.91 GB

memory with ESXi v6.5.0-standard, IP address 192.168.42.4

o Palo Alto v8.0.5

o Ubuntu Server 17.04 hosting OpenVPN

o Windows Server 2016 hosting PPTP VPN service

www.manaraa.com

43

• Dell OptiPlex 9020 x64-based PC hard drive hosting Windows Server 2016, Intel64

Family 6 Model 60 Stepping 3 GenuineIntel ~800 Mhz processor, IP address

192.168.43.250

For the second hard drive that was meant to serve as the iperf server agent to operate in

the 192.168.43.0 network, the above VPN VMs were configured to permit open virtual ethernet

interfaces to operate as the 43 subnet’s default gateway. The VPNs, active one at a time with the

other VMs suspended, were assigned 192.168.42.2 as the local static IP while their additional

virtual ethernets were assigned 192.168.43.1. The two hard drives were hardwired into a switch

to allow a firm connection for this network relation. As for the client endpoint devices involved

in this research, they include the following hardware and operating system information.

• Microsoft Surface Book with Windows 10 Professional x64 based OS, Intel64 Family 6

Model 78 Stepping 3 GenuineIntel ~2396 MHz processor, 8118 MB physical memory,

9398 MB virtual memory, and five NICs.

• MacOS Sierra Version 10.12.3, iMac (27-inch, Mid 2010), 2.93 GHz Intel Core i7

processor, 16 GB evenly split into four 1333 MHz DDR3 memory modules, and an ATI

Radeon HD 5750 1024 MB graphics card.

• Samsung Galaxy S7 Edge (Verizon) [SM-G935V], Android v7.0 OS, kernel version

3.18.31, hardware version REV0.7, 2.1 GHz Qualcomm MSM8996 Snapdragon 820

processor, 4.0 GB memory RAM, 32 GB storage, and four security software applications.

3.3.2 Tuning Factors

The purpose of FAVE is to define VPN parameters according to the needs of a network

entity, hence determine favored settings. The needs generally scale between wanting a speedy

www.manaraa.com

44

response between network communications to encrypting every data packet passing through for

extra protection. VPNs would have to accommodate to a good variety of client devices just if the

clients themselves can establish connections to the VPN they are signing into. The framework is

essentially mindful of all participants, given the settings are adjusted accordingly.

 There is a checklist of tuning factors to watch out for. These items include network

topology, device arrangement, choice of encryption, and partitioned system resources among

clients. For repeatability, it is prudent for the researcher or network administrator to maintain a

level of consistency upon setting up a framework like FAVE to test different VPN structures.

 The layout of the framework’s networks must be drawn out to clearly understand the

packet machinations between server and client. This includes participating subnets, IP address

assignments, and defined gateways. The hardware aspect of forming a VPN-tuning framework is

also significant in the sense that the server devices and main router would need to be hardwired

together while preserving the subnet schema. This also applies to personal devices representing

the client side of the topology as their participation suggests the necessary configurations for

VPNs to allow clients of different platforms and operating systems to join in the first place.

 Within a VPN itself lies the possibilities of implementing settings such as firewall rules

and encryption algorithms. While the use of firewalls would permit or deny certain IP addresses

and ports, the focus lies upon choice of encryption. The choices of encryption can fall upon the

provided defaults recommended by the VPN make or follow the encryption algorithms strictly

enforced under FIPS settings.

 Lastly, the VPNs themselves would need to be given an equal share of resources in

whichever virtual environment they are stationed in for the framework to provide tuning insights,

though it is recommended to use VMware ESXi to store and manage the VPN VMs due to its

www.manaraa.com

45

ease of use. This is because integral details such as CPU memory, core processors, and related

can affect VPN VM performance, such as increased bandwidth within short intervals of time

because of the VPN struggling to forward the packets between client and server in a sensible

manner.

www.manaraa.com

46

4 RESULTS & ANALYSIS

FAVE consists of two primary components, the iperf tool collecting network traffic data

from different platforms upon connecting to different VPN architectures and the security

measures derived from data analysis by my own research and expertise compared to a few best

practices currently publicized regarding the hardening of personal devices. This chapter explains

in detail the construction of this framework’s mechanics and the results brought about running

the iperf tool to collect the VPN traffic performance for each machine involved.

 Data Collection

The collection of data has been manually harvested through executing the iperf server

and client agents between the four main platforms: Windows 10, macOS Sierra, and Android

mobile. Data from the default settings of each VPN server, as well as under FIPS-defined

settings when applicable, has been collected. At different intervals during the research period, the

devices had established connections with the following VPN setups:

• Palo Alto GlobalProtect using IPsec and AES-256 encryption.

• OpenVPN using SSL and AES-256 encryption on an Ubuntu Server 17.04 VM.

• A Windows Server 2016 VM running a PPTP server.

www.manaraa.com

47

The raw data collection is in the following subsection while the analysis of the collected

data plus calculated standard deviation, specifically Figure 4-1 and Figure 4-2, is in the next

section of the chapter.

4.1.1 Fixed Transfer Bandwidth

To determine any significant changes in network speeds between these VPNs, a

benchmark is provided in iperf sending a fixed transfer of 100 MBytes over connections with no

connections to a VPN and with connections through the featured VPNs. This is performed by

tcpdump through the Windows client device to monitor the bytes during communication,

ensuring that they are going over the VPN. Typically, the client address would be viewed using

TCP port 5001, iperf’s default communication, but when logged into a VPN, the communicating

port is expected to be TCP port 443, or UDP port 1194 for OpenVPN using UDP traffic. See

Table 4.1 to view produced bytes per frame produced by each fixed file.

Table 4.1: Fixed Transfer Results

Setting Interval Transfer Bandwidth Bytes per Frame

No VPN 0.0 – 4.0 sec 100 MBytes 211 Mbits/sec 106 MBytes

Palo Alto, No
FIPS

0.0 – 6.2 sec 100 MBytes 136 Mbits/sec 118 MBytes

Palo Alto, FIPS 0.0 – 846.7 sec 100 MBytes 993 Kbits/sec 117 MBytes

OpenVPN, No
FIPS

0.0 – 13.2 sec 100 MBytes 85.6 Mbits/sec 125 MBytes

OpenVPN, FIPS 0.0 – 13.3 sec 100 MBytes 82.1 Mbits/sec 122 MBytes

PPTP, No FIPS 0.0 – 11.1 sec 100 MBytes 75.7 Mbits/sec 115 MBytes

PPTP, FIPS 0.0 – 14.0 sec 100 MBytes 60.0 Mbits/sec 115 MBytes

www.manaraa.com

48

4.1.2 Windows Client Results

Performance tests on a Windows 10 client have revealed strong consistency between all

twenty ten-second intervals for each setting. See Table 4.2 for the first iperf test communicating

to the server within the isolated network’s reach, no VPN involved or active during the two-

hundred seconds the testing took place. See Table 4.3 for the iperf tests on the Palo Alto VMs,

differentiated by the fact that one VM is in normal mode while the other is in FIPS-CC mode.

See Table 4.4 for the iperf tests conducted on OpenVPN with OpenSSL FIPS Object Module

disabled and enabled. See Table 4.5 for the iperf tests results done through the Windows PPTP

server with the FIPS policy disabled and enabled.

Table 4.2: Windows Client Iperf Results with No VPN

Interval Transfer Bandwidth
0.0-10.0 sec 241 MBytes 202 Mbits/sec
10.0-20.0 sec 238 MBytes 200 Mbits/sec
20.0-30.0 sec 240 MBytes 202 Mbits/sec
30.0-40.0 sec 240 MBytes 201 Mbits/sec
40.0-50.0 sec 243 MBytes 204 Mbits/sec
50.0-60.0 sec 241 MBytes 202 Mbits/sec
60.0-70.0 sec 240 MBytes 201 Mbits/sec
70.0-80.0 sec 238 MBytes 200 Mbits/sec
80.0-90.0 sec 235 MBytes 197 Mbits/sec
90.0-100.0 sec 232 MBytes 195 Mbits/sec
100.0-110.0 sec 234 MBytes 197 Mbits/sec
110.0-120.0 sec 234 MBytes 197 Mbits/sec
120.0-130.0 sec 260 MBytes 218 Mbits/sec
130.0-140.0 sec 262 MBytes 219 Mbits/sec
140.0-150.0 sec 260 MBytes 218 Mbits/sec
150.0-160.0 sec 272 MBytes 228 Mbits/sec
160.0-170.0 sec 266 MBytes 223 Mbits/sec
170.0-180.0 sec 263 MBytes 221 Mbits/sec
180.0-190.0 sec 264 MBytes 221 Mbits/sec
190.0-200.0 sec 266 MBytes 223 Mbits/sec

Total Average
0.0-200.0 sec 4.85 GBytes 208 Mbits/sec

www.manaraa.com

49

Table 4.3: Windows Client Iperf Results Using Palo Alto VPN

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 160 MBytes 135 Mbits/sec 1.00 MBytes 839 Kbits/sec
10.0-20.0 sec 169 MBytes 142 Mbits/sec 1.00 MBytes 839 Kbits/sec
20.0-30.0 sec 171 MBytes 143 Mbits/sec 768 KBytes 629 Kbits/sec
30.0-40.0 sec 174 MBytes 146 Mbits/sec 640 KBytes 524 Kbits/sec
40.0-50.0 sec 177 MBytes 149 Mbits/sec 512 KBytes 419 Kbits/sec
50.0-60.0 sec 170 MBytes 143 Mbits/sec 1.25 MBytes 1.05 Mbits/sec
60.0-70.0 sec 164 MBytes 137 Mbits/sec 1.12 MBytes 944 Kbits/sec
70.0-80.0 sec 171 MBytes 144 Mbits/sec 1.25 MBytes 1.05 Mbits/sec
80.0-90.0 sec 172 MBytes 144 Mbits/sec 1.12 MBytes 944 Kbits/sec
90.0-100.0 sec 159 MBytes 133 Mbits/sec 1.12 MBytes 944 Kbits/sec
100.0-110.0 sec 168 MBytes 141 Mbits/sec 1.38 MBytes 1.15 Mbits/sec
110.0-120.0 sec 169 MBytes 142 Mbits/sec 1.12 MBytes 944 Kbits/sec
120.0-130.0 sec 171 MBytes 144 Mbits/sec 1.25 MBytes 1.05 Mbits/sec
130.0-140.0 sec 176 MBytes 147 Mbits/sec 1.38 MBytes 1.15 Mbits/sec
140.0-150.0 sec 167 MBytes 140 Mbits/sec 1.12 MBytes 944 Kbits/sec
150.0-160.0 sec 172 MBytes 144 Mbits/sec 1.12 MBytes 944 Kbits/sec
160.0-170.0 sec 176 MBytes 148 Mbits/sec 1.12 MBytes 944 Kbits/sec
170.0-180.0 sec 163 MBytes 137 Mbits/sec 1.12 MBytes 944 Kbits/sec
180.0-190.0 sec 170 MBytes 143 Mbits/sec 1.12 MBytes 944 Kbits/sec
190.0-200.0 sec 169 MBytes 142 Mbits/sec 1.25 MBytes 1.05 Mbits/sec

Total Average Total Average
0.0-200.0 sec 3.31 GBytes 142 Mbits/sec 21.8 MBytes 906 Kbits/sec

No FIPS FIPS

www.manaraa.com

50

Table 4.4: Windows Client Iperf Results Using OpenVPN

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 117 MBytes 98.5 Mbits/sec 107 MBytes 88.5 Mbits/sec
10.0-20.0 sec 122 MBytes 103 Mbits/sec 110 MBytes 90.5 Mbits/sec
20.0-30.0 sec 118 MBytes 99.3 Mbits/sec 110 MBytes 90.0 Mbits/sec
30.0-40.0 sec 122 MBytes 102 Mbits/sec 102 MBytes 92.6 Mbits/sec
40.0-50.0 sec 123 MBytes 103 Mbits/sec 101 MBytes 91.4 Mbits/sec
50.0-60.0 sec 111 MBytes 93.0 Mbits/sec 111 MBytes 92.7 Mbits/sec
60.0-70.0 sec 106 MBytes 88.6 Mbits/sec 122 MBytes 92.1 Mbits/sec
70.0-80.0 sec 108 MBytes 90.5 Mbits/sec 110 MBytes 90.5 Mbits/sec
80.0-90.0 sec 112 MBytes 93.7 Mbits/sec 110 MBytes 92.7 Mbits/sec
90.0-100.0 sec 119 MBytes 100 Mbits/sec 109 MBytes 90.0 Mbits/sec
100.0-110.0 sec 110 MBytes 92.7 Mbits/sec 107 MBytes 89.8 Mbits/sec
110.0-120.0 sec 115 MBytes 96.7 Mbits/sec 110 MBytes 91.7 Mbits/sec
120.0-130.0 sec 107 MBytes 89.8 Mbits/sec 112 MBytes 93.7 Mbits/sec
130.0-140.0 sec 122 MBytes 102 Mbits/sec 106 MBytes 88.6 Mbits/sec
140.0-150.0 sec 114 MBytes 95.8 Mbits/sec 108 MBytes 89.8 Mbits/sec
150.0-160.0 sec 118 MBytes 99.3 Mbits/sec 110 MBytes 90.9 Mbits/sec
160.0-170.0 sec 122 MBytes 102 Mbits/sec 110 MBytes 91.5 Mbits/sec
170.0-180.0 sec 123 MBytes 103 Mbits/sec 107 MBytes 87.3 Mbits/sec
180.0-190.0 sec 120 MBytes 101 Mbits/sec 110 MBytes 91.3 Mbits/sec
190.0-200.0 sec 121 MBytes 102 Mbits/sec 109 MBytes 89.4 Mbits/sec

Total Average Total Average
0.0-200.0 sec 2.28 GBytes 97.8 Mbits/sec 2.58 GBytes 90.7 Mbits/sec

No FIPS FIPS

www.manaraa.com

51

Table 4.5: Windows Client Iperf Results Using Windows Server VPN (PPTP)

4.1.3 Mac Client Results

The network performance tests on the macOS Sierra client yielded significantly strong

consistency in its intervals for nearly all settings. See Table 4.6 for the iperf test communicating

to the server agent with no VPN involved. See Table 4.7 for the iperf tests on the Palo Alto VMs.

See Table 4.8 for the iperf tests conducted on OpenVPN. See Table 4.9 for the iperf tests results

done through the Windows PPTP server.

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 105 MBytes 88.1 Mbits/sec 119 MBytes 99.5 Mbits/sec
10.0-20.0 sec 92.6 MBytes 77.7 Mbits/sec 112 MBytes 94.0 Mbits/sec
20.0-30.0 sec 98.2 MBytes 82.4 Mbits/sec 116 MBytes 97.0 Mbits/sec
30.0-40.0 sec 108 MBytes 90.4 Mbits/sec 120 MBytes 101 Mbits/sec
40.0-50.0 sec 103 MBytes 86.4 Mbits/sec 112 MBytes 94.3 Mbits/sec
50.0-60.0 sec 101 MBytes 84.7 Mbits/sec 111 MBytes 93.4 Mbits/sec
60.0-70.0 sec 93.2 MBytes 78.2 Mbits/sec 109 MBytes 91.5 Mbits/sec
70.0-80.0 sec 105 MBytes 88.1 Mbits/sec 109 MBytes 91.4 Mbits/sec
80.0-90.0 sec 110 MBytes 92.5 Mbits/sec 113 MBytes 94.9 Mbits/sec
90.0-100.0 sec 112 MBytes 94.2 Mbits/sec 93.4 MBytes 78.3 Mbits/sec
100.0-110.0 sec 115 MBytes 96.5 Mbits/sec 94.9 MBytes 79.6 Mbits/sec
110.0-120.0 sec 111 MBytes 93.1 Mbits/sec 108 MBytes 90.3 Mbits/sec
120.0-130.0 sec 116 MBytes 97.5 Mbits/sec 102 MBytes 85.8 Mbits/sec
130.0-140.0 sec 99.8 MBytes 83.7 Mbits/sec 104 MBytes 87.0 Mbits/sec
140.0-150.0 sec 80.6 MBytes 67.6 Mbits/sec 103 MBytes 86.2 Mbits/sec
150.0-160.0 sec 97.1 MBytes 81.5 Mbits/sec 124 MBytes 104 Mbits/sec
160.0-170.0 sec 106 MBytes 89.1 Mbits/sec 110 MBytes 91.9 Mbits/sec
170.0-180.0 sec 98.4 MBytes 82.5 Mbits/sec 123 MBytes 103 Mbits/sec
180.0-190.0 sec 114 MBytes 95.5 Mbits/sec 116 MBytes 97.3 Mbits/sec
190.0-200.0 sec 106 MBytes 89.0 Mbits/sec 117 MBytes 98.5 Mbits/sec

Total Average Total Average
0.0-200.0 sec 2.02 GBytes 86.9 Mbits/sec 2.16 GBytes 92.9 Mbits/sec

No FIPS FIPS

www.manaraa.com

52

Table 4.6: Mac Client Iperf Results with No VPN

Interval Transfer Bandwidth
0.0-10.0 sec 220 MBytes 184 Mbits/sec
10.0-20.0 sec 220 MBytes 184 Mbits/sec
20.0-30.0 sec 220 MBytes 185 Mbits/sec
30.0-40.0 sec 219 MBytes 184 Mbits/sec
40.0-50.0 sec 219 MBytes 184 Mbits/sec
50.0-60.0 sec 220 MBytes 185 Mbits/sec
60.0-70.0 sec 221 MBytes 185 Mbits/sec
70.0-80.0 sec 219 MBytes 184 Mbits/sec
80.0-90.0 sec 216 MBytes 181 Mbits/sec
90.0-100.0 sec 218 MBytes 183 Mbits/sec
100.0-110.0 sec 217 MBytes 182 Mbits/sec
110.0-120.0 sec 220 MBytes 184 Mbits/sec
120.0-130.0 sec 202 MBytes 169 Mbits/sec
130.0-140.0 sec 202 MBytes 169 Mbits/sec
140.0-150.0 sec 202 MBytes 170 Mbits/sec
150.0-160.0 sec 201 MBytes 168 Mbits/sec
160.0-170.0 sec 199 MBytes 167 Mbits/sec
170.0-180.0 sec 202 MBytes 169 Mbits/sec
180.0-190.0 sec 199 MBytes 167 Mbits/sec
190.0-200.0 sec 203 MBytes 170 Mbits/sec

Total Average
0.0-200.0 sec 4.14 GBytes 178 Mbits/sec

www.manaraa.com

53

Table 4.7: Mac Client Iperf Results Using Palo Alto VPN

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 192 MBytes 161 Mbits/sec 768 KBytes 629 Kbits/sec
10.0-20.0 sec 191 MBytes 160 Mbits/sec 768 KBytes 629 Kbits/sec
20.0-30.0 sec 192 MBytes 161 Mbits/sec 640 KBytes 524 Kbits/sec
30.0-40.0 sec 194 MBytes 163 Mbits/sec 640 KBytes 524 Kbits/sec
40.0-50.0 sec 188 MBytes 158 Mbits/sec 768 KBytes 629 Kbits/sec
50.0-60.0 sec 193 MBytes 162 Mbits/sec 896 KBytes 734 Kbits/sec
60.0-70.0 sec 196 MBytes 164 Mbits/sec 1.00 MBytes 839 Kbits/sec
70.0-80.0 sec 196 MBytes 164 Mbits/sec 1.00 MBytes 839 Kbits/sec
80.0-90.0 sec 194 MBytes 163 Mbits/sec 1.12 MBytes 944 Kbits/sec
90.0-100.0 sec 190 MBytes 159 Mbits/sec 1.00 MBytes 839 Kbits/sec
100.0-110.0 sec 195 MBytes 163 Mbits/sec 1.00 MBytes 839 Kbits/sec
110.0-120.0 sec 194 MBytes 163 Mbits/sec 1.12 MBytes 944 Kbits/sec
120.0-130.0 sec 193 MBytes 162 Mbits/sec 1.12 MBytes 944 Kbits/sec
130.0-140.0 sec 193 MBytes 162 Mbits/sec 1.12 MBytes 944 Kbits/sec
140.0-150.0 sec 196 MBytes 164 Mbits/sec 1.00 MBytes 839 Kbits/sec
150.0-160.0 sec 198 MBytes 166 Mbits/sec 1.12 MBytes 944 Kbits/sec
160.0-170.0 sec 196 MBytes 164 Mbits/sec 1.00 MBytes 839 Kbits/sec
170.0-180.0 sec 196 MBytes 165 Mbits/sec 1.00 MBytes 839 Kbits/sec
180.0-190.0 sec 194 MBytes 163 Mbits/sec 1.12 MBytes 944 Kbits/sec
190.0-200.0 sec 194 MBytes 163 Mbits/sec 1.12 MBytes 944 Kbits/sec

Total Average Total Average
0.0-200.0 sec 3.78 GBytes 162 Mbits/sec 19.4 MBytes 810 Kbits/sec

No FIPS FIPS

www.manaraa.com

54

Table 4.8: Mac Client Iperf Results Using OpenVPN

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 98.9 MBytes 82.9 Mbits/sec 92.9 MBytes 77.9 Mbits/sec
10.0-20.0 sec 104 MBytes 87.1 Mbits/sec 79.4 MBytes 66.6 Mbits/sec
20.0-30.0 sec 92.4 MBytes 77.5 Mbits/sec 80.0 MBytes 67.1 Mbits/sec
30.0-40.0 sec 92.8 MBytes 77.8 Mbits/sec 84.5 MBytes 70.9 Mbits/sec
40.0-50.0 sec 96.2 MBytes 80.7 Mbits/sec 78.9 MBytes 66.2 Mbits/sec
50.0-60.0 sec 92.8 MBytes 77.8 Mbits/sec 80.1 MBytes 67.2 Mbits/sec
60.0-70.0 sec 92.6 MBytes 77.7 Mbits/sec 87.9 MBytes 73.7 Mbits/sec
70.0-80.0 sec 98.4 MBytes 82.5 Mbits/sec 79.1 MBytes 66.4 Mbits/sec
80.0-90.0 sec 92.5 MBytes 77.6 Mbits/sec 79.8 MBytes 66.9 Mbits/sec
90.0-100.0 sec 92.6 MBytes 77.7 Mbits/sec 113 MBytes 95.0 Mbits/sec
100.0-110.0 sec 98.2 MBytes 82.4 Mbits/sec 79.9 MBytes 67.0 Mbits/sec
110.0-120.0 sec 92.2 MBytes 77.4 Mbits/sec 79.6 MBytes 66.8 Mbits/sec
120.0-130.0 sec 93.0 MBytes 78.0 Mbits/sec 83.2 MBytes 69.8 Mbits/sec
130.0-140.0 sec 96.8 MBytes 81.2 Mbits/sec 80.4 MBytes 67.4 Mbits/sec
140.0-150.0 sec 93.4 MBytes 78.3 Mbits/sec 79.8 MBytes 66.9 Mbits/sec
150.0-160.0 sec 92.4 MBytes 77.5 Mbits/sec 81.8 MBytes 68.6 Mbits/sec
160.0-170.0 sec 99.2 MBytes 83.3 Mbits/sec 85.6 MBytes 71.8 Mbits/sec
170.0-180.0 sec 92.6 MBytes 77.7 Mbits/sec 82.0 MBytes 68.8 Mbits/sec
180.0-190.0 sec 92.6 MBytes 77.7 Mbits/sec 88.6 MBytes 74.3 Mbits/sec
190.0-200.0 sec 99.0 MBytes 83.0 Mbits/sec 79.2 MBytes 66.5 Mbits/sec

Total Average Total Average
0.0-200.0 sec 1.86 GBytes 79.8 Mbits/sec 1.64 GBytes 70.3 Mbits/sec

No FIPS FIPS

www.manaraa.com

55

Table 4.9: Mac Client Iperf Results Under Windows Server VPN (PPTP)

4.1.4 Android Client Results

This section lists the iperf results gathered from the Android platform. See Table 4.10 for

the iperf test communicating to the server agent with no VPN involved. See Table 4.11 for the

iperf tests on the Palo Alto VMs. See Table 4.12 for the iperf tests conducted on OpenVPN. See

Table 4.13 for the iperf tests results done through the Windows PPTP server.

 An important reminder regarding the analysis of Palo Alto through Android is that for the

Android to connect to its VPN, the firewall requires licensing for the app to successfully connect.

The normal mode firewall was the only Palo Alto VM to gain a license key to permit the

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 152 MBytes 128 Mbits/sec 72.5 MBytes 60.8 Mbits/sec
10.0-20.0 sec 134 MBytes 112 Mbits/sec 72.0 MBytes 60.4 Mbits/sec
20.0-30.0 sec 74.9 MBytes 62.8 Mbits/sec 182 MBytes 152 Mbits/sec
30.0-40.0 sec 69.8 MBytes 58.5 Mbits/sec 218 MBytes 183 Mbits/sec
40.0-50.0 sec 79.0 MBytes 66.3 Mbits/sec 222 MBytes 186 Mbits/sec
50.0-60.0 sec 73.9 MBytes 62.0 Mbits/sec 218 MBytes 183 Mbits/sec
60.0-70.0 sec 125 MBytes 105 Mbits/sec 84.6 MBytes 71.0 Mbits/sec
70.0-80.0 sec 220 MBytes 185 Mbits/sec 72.9 MBytes 61.1 Mbits/sec
80.0-90.0 sec 218 MBytes 182 Mbits/sec 76.8 MBytes 64.4 Mbits/sec
90.0-100.0 sec 218 MBytes 183 Mbits/sec 85.1 MBytes 71.4 Mbits/sec
100.0-110.0 sec 222 MBytes 186 Mbits/sec 192 MBytes 161 Mbits/sec
110.0-120.0 sec 219 MBytes 183 Mbits/sec 223 MBytes 187 Mbits/sec
120.0-130.0 sec 197 MBytes 165 Mbits/sec 193 MBytes 162 Mbits/sec
130.0-140.0 sec 105 MBytes 88.2 Mbits/sec 199 MBytes 167 Mbits/sec
140.0-150.0 sec 72.5 MBytes 60.8 Mbits/sec 204 MBytes 171 Mbits/sec
150.0-160.0 sec 74.8 MBytes 62.7 Mbits/sec 194 MBytes 163 Mbits/sec
160.0-170.0 sec 91.8 MBytes 77.0 Mbits/sec 80.6 MBytes 67.6 Mbits/sec
170.0-180.0 sec 74.9 MBytes 62.8 Mbits/sec 81.8 MBytes 68.6 Mbits/sec
180.0-190.0 sec 74.0 MBytes 62.1 Mbits/sec 85.5 MBytes 71.7 Mbits/sec
190.0-200.0 sec 152 MBytes 128 Mbits/sec 77.1 MBytes 64.7 Mbits/sec

Total Average Total Average
0.0-200.0 sec 2.59 GBytes 111 Mbits/sec 2.77 GBytes 119 Mbits/sec

No FIPS FIPS

www.manaraa.com

56

connection, meaning results for the FIPS-CC mode firewall couldn’t be attained during the

testing period. However, a request for a license key was sent out to a Palo Alto Networks

associate, but time constraints forced FIPS-CC mode results to be cut for this scenario.

Table 4.10: Android Client Iperf Results with No VPN

Interval Transfer Bandwidth
0.0-10.0 sec 73.6 MBytes 61.8 Mbits/sec
10.0-20.0 sec 78.5 MBytes 65.9 Mbits/sec
20.0-30.0 sec 80.4 MBytes 67.4 Mbits/sec
30.0-40.0 sec 79.0 MBytes 66.3 Mbits/sec
40.0-50.0 sec 76.0 MBytes 63.8 Mbits/sec
50.0-60.0 sec 71.9 MBytes 60.3 Mbits/sec
60.0-70.0 sec 71.1 MBytes 59.7 Mbits/sec
70.0-80.0 sec 79.2 MBytes 66.5 Mbits/sec
80.0-90.0 sec 78.1 MBytes 65.5 Mbits/sec
90.0-100.0 sec 76.4 MBytes 64.1 Mbits/sec
100.0-110.0 sec 77.5 MBytes 65.0 Mbits/sec
110.0-120.0 sec 77.5 MBytes 65.0 Mbits/sec
120.0-130.0 sec 67.6 MBytes 56.7 Mbits/sec
130.0-140.0 sec 74.8 MBytes 62.7 Mbits/sec
140.0-150.0 sec 80.9 MBytes 67.8 Mbits/sec
150.0-160.0 sec 77.0 MBytes 64.6 Mbits/sec
160.0-170.0 sec 78.0 MBytes 65.4 Mbits/sec
170.0-180.0 sec 76.5 MBytes 64.2 Mbits/sec
180.0-190.0 sec 69.8 MBytes 58.5 Mbits/sec
190.0-200.0 sec 71.5 MBytes 60.0 Mbits/sec

Total Average
0.0-200.0 sec 1.48 GBytes 63.6 Mbits/sec

www.manaraa.com

57

Table 4.11: Android Client Iperf Results Using Palo Alto VPN

Interval Transfer Bandwidth
0.0-10.0 sec 71.5 MBytes 60.0 Mbits/sec
10.0-20.0 sec 63.8 MBytes 53.5 Mbits/sec
20.0-30.0 sec 59.4 MBytes 49.8 Mbits/sec
30.0-40.0 sec 65.5 MBytes 54.9 Mbits/sec
40.0-50.0 sec 61.5 MBytes 51.6 Mbits/sec
50.0-60.0 sec 67.1 MBytes 56.3 Mbits/sec
60.0-70.0 sec 66.0 MBytes 55.4 Mbits/sec
70.0-80.0 sec 60.1 MBytes 50.4 Mbits/sec
80.0-90.0 sec 59.4 MBytes 49.8 Mbits/sec
90.0-100.0 sec 62.5 MBytes 52.4 Mbits/sec
100.0-110.0 sec 63.9 MBytes 53.6 Mbits/sec
110.0-120.0 sec 66.4 MBytes 55.7 Mbits/sec
120.0-130.0 sec 58.6 MBytes 49.2 Mbits/sec
130.0-140.0 sec 63.8 MBytes 53.5 Mbits/sec
140.0-150.0 sec 66.1 MBytes 55.5 Mbits/sec
150.0-160.0 sec 63.5 MBytes 53.3 Mbits/sec
160.0-170.0 sec 66.6 MBytes 55.9 Mbits/sec
170.0-180.0 sec 63.8 MBytes 53.5 Mbits/sec
180.0-190.0 sec 63.0 MBytes 52.8 Mbits/sec
190.0-200.0 sec 63.6 MBytes 53.4 Mbits/sec

Total Average
0.0-200.0 sec 1.25 GBytes 53.5 Mbits/sec

No FIPS

www.manaraa.com

58

Table 4.12: Android Client Iperf Results Using OpenVPN

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 20.5 MBytes 18.3 Mbits/sec 11.5 MBytes 9.65 Mbits/sec
10.0-20.0 sec 17.0 MBytes 14.9 Mbits/sec 8.75 MBytes 7.34 Mbits/sec
20.0-30.0 sec 17.4 MBytes 15.2 Mbits/sec 7.75 MBytes 6.50 Mbits/sec
30.0-40.0 sec 21.2 MBytes 18.8 Mbits/sec 7.25 MBytes 6.08 Mbits/sec
40.0-50.0 sec 19.2 MBytes 17.3 Mbits/sec 14.8 MBytes 12.4 Mbits/sec
50.0-60.0 sec 25.5 MBytes 21.8 Mbits/sec 17.6 MBytes 14.8 Mbits/sec
60.0-70.0 sec 22.7 MBytes 19.2 Mbits/sec 20.5 MBytes 17.2 Mbits/sec
70.0-80.0 sec 20.2 MBytes 18.4 Mbits/sec 23.9 MBytes 20.0 Mbits/sec
80.0-90.0 sec 23.6 MBytes 19.9 Mbits/sec 22.8 MBytes 19.1 Mbits/sec
90.0-100.0 sec 20.1 MBytes 18.0 Mbits/sec 24.1 MBytes 20.2 Mbits/sec
100.0-110.0 sec 24.0 MBytes 20.1 Mbits/sec 18.1 MBytes 15.2 Mbits/sec
110.0-120.0 sec 25.5 MBytes 21.8 Mbits/sec 24.4 MBytes 20.4 Mbits/sec
120.0-130.0 sec 23.5 MBytes 19.8 Mbits/sec 24.5 MBytes 20.6 Mbits/sec
130.0-140.0 sec 22.6 MBytes 19.1 Mbits/sec 23.6 MBytes 19.8 Mbits/sec
140.0-150.0 sec 21.5 MBytes 18.9 Mbits/sec 23.5 MBytes 19.7 Mbits/sec
150.0-160.0 sec 21.2 MBytes 18.7 Mbits/sec 23.2 MBytes 19.5 Mbits/sec
160.0-170.0 sec 21.3 MBytes 18.8 Mbits/sec 24.2 MBytes 20.3 Mbits/sec
170.0-180.0 sec 24.5 MBytes 20.4 Mbits/sec 19.5 MBytes 16.4 Mbits/sec
180.0-190.0 sec 30.8 MBytes 25.5 Mbits/sec 19.4 MBytes 16.3 Mbits/sec
190.0-200.0 sec 28.1 MBytes 23.6 Mbits/sec 25.0 MBytes 21.0 Mbits/sec

Total Average Total Average
0.0-200.0 sec 450 MBytes 19.4 Mbits/sec 384 MBytes 16.1 Mbits/sec

No FIPS FIPS

www.manaraa.com

59

Table 4.13: Android Client Iperf Results Using Windows Server VPN (PPTP)

 Framework Analysis

The validity of FAVE relied on the network connectivity and traffic between iperf client

and server through VPN tunneling. This section covers the analysis and understanding of how

the data resulted in the way it did, particularly the technological issues and limitations during the

research period resulting in questionable outputs at first glance. The objectives include

evaluating the framework’s capability of providing distinction of different encryption settings

implemented upon VPNs and how it affections different client platforms reaching out to the

same desktop endpoint.

Interval Transfer Bandwidth Transfer Bandwidth
0.0-10.0 sec 33.9 MBytes 28.4 Mbits/sec 41.5 MBytes 34.8 Mbits/sec
10.0-20.0 sec 31.8 MBytes 26.6 Mbits/sec 26.1 MBytes 21.9 Mbits/sec
20.0-30.0 sec 32.1 MBytes 26.9 Mbits/sec 29.9 MBytes 25.1 Mbits/sec
30.0-40.0 sec 28.4 MBytes 23.8 Mbits/sec 25.2 MBytes 21.2 Mbits/sec
40.0-50.0 sec 15.8 MBytes 13.2 Mbits/sec 21.8 MBytes 18.2 Mbits/sec
50.0-60.0 sec 27.5 MBytes 23.1 Mbits/sec 35.9 MBytes 30.1 Mbits/sec
60.0-70.0 sec 34.0 MBytes 28.5 Mbits/sec 31.0 MBytes 26.0 Mbits/sec
70.0-80.0 sec 22.6 MBytes 19.0 Mbits/sec 41.4 MBytes 34.7 Mbits/sec
80.0-90.0 sec 29.5 MBytes 24.7 Mbits/sec 23.9 MBytes 20.0 Mbits/sec
90.0-100.0 sec 21.6 MBytes 18.1 Mbits/sec 25.9 MBytes 21.7 Mbits/sec
100.0-110.0 sec 19.5 MBytes 16.4 Mbits/sec 18.8 MBytes 15.7 Mbits/sec
110.0-120.0 sec 17.8 MBytes 14.9 Mbits/sec 41.5 MBytes 34.8 Mbits/sec
120.0-130.0 sec 28.1 MBytes 23.6 Mbits/sec 27.9 MBytes 23.4 Mbits/sec
130.0-140.0 sec 18.2 MBytes 15.3 Mbits/sec 37.4 MBytes 31.4 Mbits/sec
140.0-150.0 sec 32.5 MBytes 27.3 Mbits/sec 24.8 MBytes 20.8 Mbits/sec
150.0-160.0 sec 21.4 MBytes 17.9 Mbits/sec 25.6 MBytes 21.5 Mbits/sec
160.0-170.0 sec 33.6 MBytes 28.2 Mbits/sec 27.1 MBytes 22.8 Mbits/sec
170.0-180.0 sec 30.2 MBytes 25.4 Mbits/sec 22.6 MBytes 19.0 Mbits/sec
180.0-190.0 sec 34.2 MBytes 28.7 Mbits/sec 49.8 MBytes 41.7 Mbits/sec
190.0-200.0 sec 25.1 MBytes 21.1 Mbits/sec 47.5 MBytes 39.8 Mbits/sec

Total Average Total Average
0.0-200.0 sec 538 MBytes 22.6 Mbits/sec 626 MBytes 26.1 Mbits/sec

No FIPS FIPS

www.manaraa.com

60

4.2.1 Limitations

The main limitation during the research involved acquiring sufficient resources to build

the framework with. Given that FAVE was built from scratch, it took a good amount of time to

plan out the network topology and the machines needed to support the topology. The computer

lab the framework development took place in spared the needed machines for the framework,

which included a wireless router and a couple of Dell hard drives to install VMware ESXi and

Windows Server 2016. The ova and iso files for the VPN VMs were also provided and promptly

installed into the ESXi environment with limited space. Given equal partitioning of memory and

space for each VM, the ESXi environment was able to hold up to five VMs.

 The limited space on the ESXi also signified that only a few snapshots in total could be

taken when a need arose to roll back a VM. If there were more snapshots saved that the ESXi

could allocate, any suspended VM would be unable to power on, outputting “Module

‘MonitorLoop” power on failed” on the interface. Only a couple of snapshots should be taken as

failsafe using sound judgment if experimenting with a VPN configuration with a high error risk.

Only when the VPN configuration becomes satisfactory should the lingering snapshots be

deleted to free up additional space for the ESXi environment.

 Concerning further hardware limitations, packet monitoring and capturing was initially

performed through the ASUS Wireless Router using tcpdump. The methodology switched over

to monitoring through the ProLiant DL165 G6 Basic SATA because it was discovered that the

router was dropping about a quarter of the expected data packet total during the fixed transfer

iperf tests. The Basic SATA boasted a more robust frame in keeping the data flowing with a zero

percent drop rate.

www.manaraa.com

61

 Another major limitation was the liberal usage of Palo Alto software to certain degrees.

The ova file to create a Palo Alto firewall was provided by the computer lab due to the

sponsorship with Palo Alto Networks. However, obtaining a license key to use the firewall’s full

features, including the ability for the GlobalProtect app for Android to connect to it, required a

more formal process. One license key was readily available from the research lab to use for the

first Palo Alto firewall set in normal mode. A request was made for another license key to use for

the second firewall set in FIPS-CC mode to fully test the Android’s interoperability over their

settings and further validate the framework by comparing averaged bandwidth rates, but due to

time constraints, this factor had to be cut from the analysis.

4.2.2 VPN Traffic Explanation

As the primary objective of the framework, VPN tuning is the process of boosting the

performance of a VPN after an evaluation of its architecture and hardware. Following the series

of iperf tests on each client device running through different VPN settings, a distinct trend can be

found shared across all the platforms during the twenty consecutive intervals.

 The tests identified the majority average of bandwidth of VPNs set to FIPS mode to be

lower than the bandwidth of VPNs using their default security configurations, including the

bandwidth for client devices regularly connecting to the iperf server under no VPN tunnel.

However, there are certain exceptions wherein the FIPS-enabled settings of a VPN resulted in a

higher averaged bandwidth than the vendor-default settings. How significantly the bandwidth

rate differs between the two varies depending on what VPN is involved and which client device

attempted the connection. See Figures 4-1 and 4-2 for graphs depicting the differences via

www.manaraa.com

62

standard error bars; the gap in difference between a VPN not using FIPS and using FIPS can be

disregarded if the error bar endpoints are within each other’s range.

Figure 4-1: Fixed Transfer Results Graph with Standard Error Bars

Figure 4-2: Collected Iperf Results Graph with Standard Error Bars

100 100 100 100 100 100 100106
118 117 125 122 115 115

0

20

40

60

80

100

120

140

160

No VPN Palo Alto, No
FIPS

Palo Alto, FIPS OpenVPN, No
FIPS

OpenVPN, FIPS PPTP, No FIPS PPTP, FIPS

Tr
an

sf
er

 (M
By

te
s)

VPN Settings

Fixed Transfer Results w/ Standard Error

Fixed File Transfer MBytes Per Frame

142

97.8
86.9

162

79.8

111

53.5
19.4 22.60.906

90.7 92.9

0.81

70.3

119

16.1 26.1

-50

0

50

100

150

200

Palo Alto
(Windows)

OpenVPN
(Windows)

PPTP
(Windows)

Palo Alto
(Mac)

OpenVPN
(Mac)

PPTP (Mac) Palo Alto
(Android)

OpenVPN
(Android)

PPTP
(Android)

Ba
nd

w
id

th
 (M

bi
ts

/s
ec

)

VPN Settings

Iperf Results w/ Standard Error

No FIPS FIPS

www.manaraa.com

63

A glaring example of bandwidth rates distinctively separate on the same VPN setting is

the Palo Alto setting as seen on both Windows and Mac clients. An example outcome from

analyzing the results of Figure 4-2 can be an administrator leaning away from using Palo Alto if

FIPS 140-2 was the designated security standards for the network, preferring to use OpenVPN

instead because of its considerably balanced rate between network speed and secure connection,

at least at first glance. There is still the fact that OpenVPN has incurred the highest encryption

overhead among the others in the fixed byte transfer tests. A more thorough explanation is

required on why the averaged bandwidths are the way they are, which would involve deeper

investigation into the security and encryption processes occurring during client-server

communication.

To ensure confidence regarding the bandwidth differences between FIPS and no-FIPS, t-

tests have been taken for each client and VPN. The t-tests are held to the recognized significance

level of 0.05. They were calculated by Microsoft Excel, using the arrays of collected FIPS and

non-FIPS iperf results, one-tailed distribution, and depending on the variance for each array,

equal or unequal types. Table 4.14 lists the p-values that meet significance level standards.

Table 4.14: T-Test Significant P-values

VPN & Client T-Test P-value

Palo Alto, Windows 3.63037E-31

OpenVPN, Windows 1.64965E-07

PPTP, Windows 0.006129484

Palo Alto, Mac 9.93778E-39

OpenVPN, Mac 1.74438E-06

OpenVPN, Android 0.006316539

PPTP, Android 0.040322866

www.manaraa.com

64

 The missing factors, PPTP, Mac and Palo Alto, Android, are excluded due to the latter’s

limitations and the former having a p-value higher than the significance level. Mac’s bandwidth

behavior through the PPTP connection shows no difference regardless of VPN settings and is

explained further down this section. As for the listed p-values, the statistics reaffirm the degrees

of variance between FIPS and no-FIPS for the selected VPN and client factors. The most

significant p-values involve Palo Alto on both featured clients followed by OpenVPN for

Windows and Mac, further contributing to the bandwidth gaps between these two VPNs.

During the initial setup of the FIPS Object Module for OpenVPN, it was found that for

FIPS to cooperate with OpenSSL, the product had to be of certain versions. The OpenSSL

version used is 1.0.2o. In short, the previous OpenSSL version installed in the Ubuntu Server had

to be uninstalled while a compatible version had to be found and installed in its place. This,

among a few basic terminal lines of unpackaging and running make files to integrate the FIPS

Object Module and compatible OpenSSL version together took nearly two months to complete.

This is because they are separate applications that aren’t provided in a Linux machine by default,

although in some cases a version of OpenSSL comes preinstalled. Compared to the way a Palo

Alto firewall switches into FIPS-CC mode within several minutes of instruction and waiting, as

written in the Methodology chapter, this is a troubling issue as there is the expectation that the

FIPS-CC firewall is performing multiple encryption policies and procedures, but even then, there

isn’t a one-hundred percent guarantee that the transferred data is fully protected from outside

exploitation.

In addition to the presented findings, these results would otherwise confirm the idea of

consistent encryption overhead effecting the bandwidth rate by significantly slowing its

performance, meaning that FIPS mode enforces only strong and approved encryption algorithms

www.manaraa.com

65

to protect the network as processed by previous network trials regarding the effects of encryption

(Anitha Rani, Ram Kumar, & Prem Kumar, 2016). The average bandwidth of each client sans

VPN usage is significantly high, attributing to the lack of encryption overhead, though there is

some deviance between results to take note of between the sequential iperf tests. Standard

deviations were taken for each client and setting to differentiate the results. See Table 4.15 for

the calculated standard deviation for this setting.

Table 4.15: Standard Deviations for Clients' Iperf Results Using No VPN

Operating System Standard Deviation σ

Windows 10.924628140124

Mac 7.4973328590906

Android 3.0181782584864

 The Palo Alto bandwidth while in FIPS-CC mode is significantly lower in comparison to

its normal counterpart upon inspection of Tables 4.3 and 4.7 throughout all clients that connected

to Palo Alto with and without FIPS upon comparing their resulting averages. However, in the

case of the Android client, there is no available comparison between FIPS and no FIPS settings

as it was previously mentioned that the license key needed to activate the full features of the Palo

Alto firewall running FIPS-CC mode was requested for, but it was not issued within the time

frame. Given that this VPN participant is a sophisticated specialized software built by an

enterprise for this purpose, the iperf tests validate its efficiency with general consistency between

intervals, at least when under normal mode. See Table 4.16 for the standard deviations between

Palo Alto’s iperf bandwidth results.

www.manaraa.com

66

Table 4.16: Standard Deviations of Palo Alto Iperf Results

Setting Standard Deviation σ

Windows, No FIPS 4.0570925550202

Windows, FIPS 184.79964826806

Mac, No FIPS 1.9104973174543

Mac, FIPS 141.26305249427

Android, No FIPS 2.5602490113268

Android, FIPS N/A

 It would be safe to determine from the standard deviations of the collective iperf results

under FIPS-CC mode for each available client device, as well as the fixed transfer byte test

performed in this setting, that heavy encryption procedures and TCP handshakes are taking place

within the VPN tunnel during live communication.

 The iperf results for OpenVPN appear to also follow the trend of the bandwidth average

being noticeably greater using its default settings versus the average collected with the FIPS

module enabled. However, unlike Palo Alto, there isn’t a significant gap between the two

settings, only separable by less than ten megabytes compared to markedly crossing over from

megabytes to kilobytes. This would suggest that there isn’t a huge difference between averaged

bandwidth rates, but the t-tests listed in Table 4.14 for clients connecting under OpenVPN do

suggest significant differences between the two settings on each client. Compared to the Palo

Alto and PPTP settings, the OpenVPN t-test p-values are in the middle range with PPTP p-values

reaching the closest to default significance level 0.05. Nonetheless, the individual variances for

OpenVPN settings running for each client are low. See Table 4.17 for the standard deviations of

OpenVPN’s iperf results.

www.manaraa.com

67

Table 4.17: Standard Deviations of OpenVPN Iperf Results

Setting Standard Deviation σ

Windows, No FIPS 4.7156627317907

Windows, FIPS 1.5847712768725

Mac, No FIPS 2.7795503233437

Mac, FIPS 6.4733221764408

Android, No FIPS 2.4116125310671

Android, FIPS 4.9398352958373

 OpenVPN’s low bandwidth is attributed to the overhead of encrypting small data packets

instead of one large packet at a time (Hoekstra & Musulin, 2011). On a related note, while

performing the fixed transfer test on Windows under both OpenVPN settings, the readout during

packet capture revealed that not all one-hundred megabytes were filtered despite no dropped

packets. The phenomenon was discovered to be the Windows client innately compressing the

data packet through some internal system process. Data compression reduces frame sizes being

transmitted over network links. The exact process or feature in Windows that caused the

compression, inadvertently skewing the packet conversation analysis, is unknown, but

discovering this phenomenon alone using the FAVE framework is within scope, fulfilling its

purpose.

It appears that it is this same property that has affected the iperf continuous interval and

fixed transfer results for the Windows Server VPN. Aaron Margosis of Microsoft discussed

about the company’s revoking of their previous recommendation of enabling FIPS mode for all

versions of Windows client and Windows Server. The article reminds that enabling FIPS mode

would result in disabling non-validated cryptographic classes, suggesting that in the case of

Windows it is doing more harm than good. Since the trend of lower bandwidth from the testing

www.manaraa.com

68

leans toward the fact that secure encryption overhead is incurring, there indicates the possibility

that the FIPS policy may be disabling some of the system’s more commonly used algorithms

because they haven’t been validated.

The resulting averages from the Windows Server VPN overall appear to be the inverse of

the recurring trend with the FIPS-enabled averages having higher bandwidth than the averages

obtained with the FIPS option disabled. The iperf results appear to be particularly spread out,

especially for the Mac client. See Table 4.18 for the standard deviations of the Windows Server

VPN iperf results.

Table 4.18: Standard Deviations of Windows Server PPTP Iperf Results

Setting Standard Deviation σ

Windows, No FIPS 7.2209608086459

Windows, FIPS 6.7732174776837

Mac, No FIPS 50.379955339401

Mac, FIPS 53.405470459495

Android, No FIPS 5.022688523092

Android, FIPS 7.3748966094448

Discussions within the Apple community shared similar issues regarding the Mac

platform’s peculiar behavior and cooperability with a Windows VPN, particularly the later

versions gaining slow throughput upon connecting with a PPTP VPN. The macOS Sierra

Version 10.12.3 and later versions beyond 10.12 has Apple drop the option to establish a PPTP

link because of the protocol’s insecurity, requiring third party VPN software to create

connectivity with a PPTP VPN. However, even then, the stability of third party software

www.manaraa.com

69

attempting to reintroduce a dropped feature is expected cause some internal conflict with the

system processes because of conflicting objectives.

Nonetheless, the utilization of FAVE revealed the issue and with additional analysis,

appropriate action would be taken in considering the VPN style and recommended client devices

to use for optimal performances and secure communication.

4.2.3 FIPS Application

The decision to use FIPS 140-2 as a standard to compare against default security settings

of different VPN structures proved to be satisfactory. FIPS 140-2 was initially selected due to it

being the currently published standard of cryptographic protection to test against, helped by the

fact that the encryption algorithms it forces systems to use are approved by the federal

government for computer security.

Its actual application on real world devices, however, is dependent on the user’s needs

and desires. While the application of FIPS has proven to slow down bandwidth for the most part

or is considered redundant in the Windows case, it is still considered secure with its set of

encryption algorithms.

4.2.4 Framework Validation

The FAVE framework has accomplished its purpose in providing a unique method of

tuning VPN security settings through the evaluation of iperf performance test results. By reading

the trends between continuous intervals and calculating the average and standard deviation of the

results, explanations regarding anomalies within the bandwidth behavior can determine the true

cause.

www.manaraa.com

70

Overall, it is integral for an organization or entity to first understand the infrastructure of

the kind of VPN it wants to deploy prior to a formal setup. Mapping out the VPN topology, such

as determining how much bandwidth the VPN can afford for connections before all users would

experience bottleneck, would save a lot of time and resources early during the trial run. For

example, solutions for preserving bandwidth if the organization does not wish to pay for

additional bandwidth can include cutting down the number of clients allowed to connect to the

VPN. In any case, it takes manual effort to monitor VPN performance and make the appropriate

patches to maintain speed and security.

www.manaraa.com

71

5 CONCLUSION & FUTURE WORK

The purpose of this research was to develop a VPN tuning framework from scratch with

the default settings of each involved VPN infrastructure compared to an enforced standard of

encryption algorithms published by the US federal government. The main objective to validate

the framework for future continuation involves being able to determine sources of bandwidth

issue from comparing a VPN’s normal settings with FIPS-enforced rules. The research question

tied in to the objective was to determine the differences between a VPN using FIPS-enforced

settings compared to its default security. This chapter summarizes the findings and opens future

possibilities using this research as the basis.

FAVE is the developed VPN tuning framework, depicting the roles of setup and roles of

tested VPNs during the client-server communication. It would be safe to say that the framework

is repeatable, whether under the same circumstances as performed in this research or for a whole

new VPN-testing scenario altogether. It detected significant differences between different VPN

settings as discussed previously in the Framework Analysis section of the last chapter. Of course,

given the limited resources, frequent technological issues, and time constraints faced in this

undertaking, the framework is far from perfect, but it does allow plenty of room for

improvement.

www.manaraa.com

72

 Future Research

The following section provides additional insights and discarded ideas that can be

considered for future research:

• Inclusion of Linux and additional platforms as clients, including the cut Android running

through Palo Alto FIPS-CC mode.

• Automated performance testing through scripts.

5.1.1 Linux Involvement

After careful contemplation over the framework development, Linux was not used as a

client platform despite using OpenVPN on an Ubuntu Server. Include Linux in all performance

tests by installing the operating system into a desktop machine instead of having it as a VM.

Linux was initially going to be used alongside Windows, Mac, and Android, but for the

framework to apply, Linux needed to connect to all VPNs with no issue. One problem found was

configuring an Ubuntu Linux VM to conform to the Palo Alto Network’s GlobalProtect through

the strongSwan client, which led to narrowing the scope of this research by cutting most of

Linux’s planned involvement out of the framework due to its unforeseen difficulty and lack of

time.

 The technical issues behind GlobalProtect had extended to the mobile app to a degree

during testing. Because the framework was developed by machines and software provided by the

BYU CSRL, there were limited features to test with. Fortunately, much progress was capable of

being carried out without a full Palo Alto subscription, but this is a note for a future that to make

full use of an enterprise VPN software, it will require a planned budget and a sure dedication to

study its performance.

www.manaraa.com

73

The developed framework has opened the possibility to involve more platforms and

operating systems for future VPN testing, such as iOS in addition to Linux and possibly its

different distros. Ubuntu would be ideal to test given its simplicity, but there’s also the

possibility of testing the likes of Debian, Fedora, or even CentOS if one researcher feels daring

enough.

5.1.2 Automated Tests

The VPN performance tests were executed manually through the iperf v2 tool, which was

required to be installed in all actively participating devices. Could have there been a more

efficient method in collecting network performance data through a single executable command?

This question poses the possibility for researchers to write up a script under any coding language,

such as C, Ruby, Node JS, or Python, and have the script run through the motions of collecting

the data without the hassle of going back and forth between devices.

In addition to writing scripts that can perform automated network performance analyses,

the challenge lies in making the script compatible with a variety of tools like iperf. The

automated scripts themselves would have to be open-sourced as to be interoperable with any tool

and platform available. This consideration was formulated in mind after considering certain tools

are not even backwards compatible, iperf being the forefront example. Iperf was selected on the

basis that it was the only viable network testing tool that can cooperate with Windows, Mac,

Android, and Linux all at once. Other open-sourced network tools like netpipe and netperf are

compatible with Linux and most UNIX-based distributions, but I haven’t found any

documentation of these tools able to operate in other platforms like Windows without requiring

intensive time-consuming configuration.

www.manaraa.com

74

 Observations

The framework that was developed to tune VPNs according to network performance on

devices is enough to prove the need to accommodate to popular opinion. It should be brought to

attention that the major issue discovered while developing FAVE was the manner of configuring

FIPS to each participating VPN. For the Palo Alto firewall and Windows Server, setting up FIPS

took a duration of ten minutes or less due to their systems having a capacity to enable FIPS

within a few steps. OpenVPN, however, required more attention in configuring its settings to

cooperate with the FIPS Object Module.

As written in the Methodology chapter and explained in the Framework Analysis section,

the ability to configure FIPS instead of simply switching it off or on grants complete control over

the system. The duration of finding and manually installing the FIPS Object Module and

compatible OpenSSL version extended to nearly two months. Given that OpenVPN and the

involved extensions are open-sourced, there is the assumption that freedom of control was what

allowed the average bandwidth of OpenVPN with FIPS to reach up to the non-FIPS results better

than Palo Alto, providing a suggestion for deeper investigation behind the latter’s security.

 To further validate the efficiency of the VPN-tuning framework with the potential to

expand and improve upon it, it would be helpful to have users sufficiently knowledgeable in the

information technology field, such as the students and faculty involved with the BYU

Information Technology program and the Cyber Security Research Lab, to test and scrutinize the

tuning framework for themselves by either with the tools and systems used here or by similar

methods. The additional validation will provide necessary insight that haven’t been covered from

the initial testing performed from this research, opening new paths and possibility on VPN

performance tuning for the future to come.

www.manaraa.com

75

REFERENCES

Alshalan, A., Pisharody, S., & Huang, D. (2016). A Survey of Mobile VPN Technologies. IEEE
Communications Surveys and Tutorials, 18(2), 1177–1196.
https://doi.org/10.1109/COMST.2015.2496624

Anitha Rani, N. R., Ram Kumar, S. K., & Prem Kumar, P. (2016). A Survey on Data

Redundancy Check in a Hybrid Cloud by using Convergent Encryption. Indian Journal of
Science and Technology, 9(4), 1–5. https://doi.org/10.17485/ijst/2016/v9i4/87036

Aouini, I., Ben Azzouz, L., & Saidane, L. A. (2016). A secure neighborhood area network using

IPsec. 2016 International Wireless Communications and Mobile Computing Conference,
IWCMC 2016, 102–107. https://doi.org/10.1109/IWCMC.2016.7577041

Ashraf, Z., & Yousaf, M. (2016). SECURE INTER-VLAN IPv6 ROUTING :

IMPLEMENTATION & EVALUATION, 28(3), 3007–3014.

Barker, W. C., & Barker, E. (2012). Recommendation for the Triple Data Encryption Algorithm

(TDEA) Block Cipher: NIST Special Publication 800-67, Revision 2.

Caddy, T. (2005). FIPS 140-2. In H. C. A. van Tilborg (Ed.), Encyclopedia of Cryptography and

Security (pp. 227–230). Boston, MA: Springer US. https://doi.org/10.1007/0-387-23483-
7_168

Gallenmüller, S., Emmerich, P., Wohlfart, F., Raumer, D., & Carle, G. (2015). Comparison of

frameworks for high-performance packet IO. ANCS 2015 - 11th 2015 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, 29–38.
https://doi.org/10.1109/ANCS.2015.7110118

Heinemann, C., Chaduvu, S. shankar, Byerly, A., & Uskov, A. (2016). OpenCL and CUDA

Software Implementations of Encryption / Decryption Algorithms for IPsec VPNs, 765–770.

Hirschler, B., & Sauter, T. (2016). Performance impact of IPsec in resource-limited smart grid

communication. IEEE International Workshop on Factory Communication Systems -
Proceedings, WFCS, 2016–June. https://doi.org/10.1109/WFCS.2016.7496517

Hoekstra, B., & Musulin, D. (2011). Comparing TCP performance of tunneled and non-tunneled

traffic using OpenVPN.

www.manaraa.com

76

"How to Set Up an OpenVPN Server on Ubuntu 16.04", Tutorials Digital Ocean Community
Web, [online] Available: https://www.digitalocean.com/community/tutorials/how-to-set-up-
an-openvpn-server-on-ubuntu-16-04.

Jin, Y., Tomoishi, M., & Matsuura, S. (2016). Enhancement of VPN authentication using GPS

information with geo-privacy protection. 2016 25th International Conference on Computer
Communications and Networks, ICCCN 2016.
https://doi.org/10.1109/ICCCN.2016.7568518

Kolahi, S. S., Cao, Y., & Chen, H. (2013). Impact of SSL Security o n Bandwidth and D elay in

IEEE 802 . 11n WLAN Using Windows 7, 1–4.
https://doi.org/10.1109/CSNDSP.2016.7574043

Liyanage, M., Ylianttila, M., & Gurtov, A. (2016). Improving the tunnel management

performance of secure VPLS architectures with SDN. 2016 13th IEEE Annual Consumer
Communications and Networking Conference, CCNC 2016, 530–536.
https://doi.org/10.1109/CCNC.2016.7444836

Margosis, A (2014). "Why We're Not Recommending 'FIPS mode' Anymore." Accessed 18

March 2018. https://blogs.technet.microsoft.com/secguide/2014/04/07/why-were-not-
recommending-fips-mode-anymore/

Narayan, S., Ishrar, S., Kumar, A., Gupta, R., & Khan, Z. (2016). Performance analysis of 4to6

and 6to4 transition mechanisms over point to point and IPSec VPN protocols.
https://doi.org/10.1109/WOCN.2016.7759027

OpenSSL Software Foundation. (2017). OpenSSL Cryptography and SSL/TLS Toolkit. User

Guide, 0, 1–225. https://doi.org/10.4337/9781782545583.00006

Rao, M., Newe, T., Grout, I., & Mathur, A. (2016). An FPGA-based reconfigurable IPSec AH

core with efficient implementation of SHA-3 for high speed IoT applications. International
Journal of Applied Engineering Research, 9(22), 5968–5974. https://doi.org/10.1002/sec

Raumer, D., Gallenmuller, S., Emmerich, P., Mardian, L., & Carle, G. (2016). Efficient Serving

of VPN Endpoints on COTS Server Hardware. 2016 5th IEEE International Conference on
Cloud Networking (Cloudnet), 164–169. https://doi.org/10.1109/CloudNet.2016.25

Roca, V., & Fall, S. (2014). Too big or too small? the PTB-PTS ICMP-based attack against IPsec

gateways. 2014 IEEE Global Communications Conference, GLOBECOM 2014, 530–536.
https://doi.org/10.1109/GLOCOM.2014.7036862

Singh, K. K. V. V, & Gupta, H. (2016). A New Approach for the Security of VPN. Proceedings

of the Second International Conference on Information and Communication Technology for
Competitive Strategies, (13), 11099–11104.

www.manaraa.com

77

Uskov, A., Byerly, A., & Heinemann, C. (2016). Advanced encryption standard analysis with
multimedia data on Intel?? AES-NI architecture. International Journal of Computer Science
and Applications, 13(2), 89–105.

Yadav, A. (2016). Security Structure of Vpn : a Survey. International Journal of Recent

Innovation in Engineering and Research, 1(1), 19–24.

www.manaraa.com

78

APPENDICES

www.manaraa.com

79

APPENDIX A. OPENVPN SERVER CONFIGURED FILES

A.1 ~/openvpn-ca/vars

easy-rsa parameter settings

NOTE: If you installed from an RPM,
don't edit this file in place in
/usr/share/openvpn/easy-rsa --
instead, you should copy the whole
easy-rsa directory to another location
(such as /etc/openvpn) so that your
edits will not be wiped out by a future
OpenVPN package upgrade.

This variable should point to
the top level of the easy-rsa
tree.
export EASY_RSA="`pwd`"

This variable should point to
the requested executables

export OPENSSL="openssl"
export PKCS11TOOL="pkcs11-tool"
export GREP="grep"

This variable should point to
the openssl.cnf file included
with easy-rsa.
export KEY_CONFIG=`$EASY_RSA/whichopensslcnf $EASY_RSA`

Edit this variable to point to
your soon-to-be-created key
directory.

WARNING: clean-all will do
a rm -rf on this directory
so make sure you define

www.manaraa.com

80

it correctly!
export KEY_DIR="$EASY_RSA/keys"

Issue rm -rf warning
echo NOTE: If you run ./clean-all, I will be doing a rm -rf on
$KEY_DIR

PKCS11 fixes
export PKCS11_MODULE_PATH="dummy"
export PKCS11_PIN="dummy"

Increase this to 2048 if you
are paranoid. This will slow
down TLS negotiation performance
as well as the one-time DH parms
generation process.
export KEY_SIZE=2048

In how many days should the root CA key expire?
export CA_EXPIRE=3650

In how many days should certificates expire?
export KEY_EXPIRE=3650

These are the default values for fields
which will be placed in the certificate.
Don't leave any of these fields blank.
export KEY_COUNTRY="US"
export KEY_PROVINCE="UT"
export KEY_CITY="Provo"
export KEY_ORG="BrighamYoungUniversity"
export KEY_EMAIL="fperez@byu.edu"
export KEY_OU="CSRL"

X509 Subject Field
export KEY_NAME="server"

PKCS11 Smart Card
export PKCS11_MODULE_PATH="/usr/lib/changeme.so"
export PKCS11_PIN=1234

If you'd like to sign all keys with the same Common Name, uncomment
the KEY_CN export below
You will also need to make sure your OpenVPN server config has the
duplicate-cn option set
export KEY_CN="CommonName"

A.2 /etc/openvpn/server.conf

Sample OpenVPN 2.0 config file for #

www.manaraa.com

81

multi-client server. #

This file is for the server side #
of a many-clients <-> one-server #
OpenVPN configuration. #

OpenVPN also supports #
single-machine <-> single-machine #
configurations (See the Examples page #
on the web site for more info). #

This config should work on Windows #
or Linux/BSD systems. Remember on #
Windows to quote pathnames and use #
double backslashes, e.g.: #
"C:\\Program Files\\OpenVPN\\config\\foo.key" #

Comments are preceded with '#' or ';' #

Which local IP address should OpenVPN
listen on? (optional)
;local a.b.c.d

Which TCP/UDP port should OpenVPN listen on?
If you want to run multiple OpenVPN instances
on the same machine, use a different port
number for each one. You will need to
open up this port on your firewall.
port 1194

TCP or UDP server?
;proto tcp
proto udp

"dev tun" will create a routed IP tunnel,
"dev tap" will create an ethernet tunnel.
Use "dev tap0" if you are ethernet bridging
and have precreated a tap0 virtual interface
and bridged it with your ethernet interface.
If you want to control access policies
over the VPN, you must create firewall
rules for the the TUN/TAP interface.
On non-Windows systems, you can give
an explicit unit number, such as tun0.
On Windows, use "dev-node" for this.
On most systems, the VPN will not function
unless you partially or fully disable
the firewall for the TUN/TAP interface.
dev tap0
;dev tun

www.manaraa.com

82

Windows needs the TAP-Win32 adapter name
from the Network Connections panel if you
have more than one. On XP SP2 or higher,
you may need to selectively disable the
Windows firewall for the TAP adapter.
Non-Windows systems usually don't need this.
;dev-node MyTap

SSL/TLS root certificate (ca), certificate
(cert), and private key (key). Each client
and the server must have their own cert and
key file. The server and all clients will
use the same ca file.

See the "easy-rsa" directory for a series
of scripts for generating RSA certificates
and private keys. Remember to use
a unique Common Name for the server
and each of the client certificates.

Any X509 key management system can be used.
OpenVPN can also use a PKCS #12 formatted key file
(see "pkcs12" directive in man page).
ca ca.crt
cert server.crt
key server.key # This file should be kept secret

Diffie hellman parameters.
Generate your own with:
openssl dhparam -out dh2048.pem 2048
dh dh2048.pem

Network topology
Should be subnet (addressing via IP)
unless Windows clients v2.0.9 and lower have to
be supported (then net30, i.e. a /30 per client)
Defaults to net30 (not recommended)
;topology subnet

Configure server mode and supply a VPN subnet
for OpenVPN to draw client addresses from.
The server will take 10.8.0.1 for itself,
the rest will be made available to clients.
Each client will be able to reach the server
on 10.8.0.1. Comment this line out if you are
ethernet bridging. See the man page for more info.
;server 192.168.43.0 255.255.255.0

Maintain a record of client <-> virtual IP address
associations in this file. If OpenVPN goes down or
is restarted, reconnecting clients can be assigned
the same virtual IP address from the pool that was

www.manaraa.com

83

previously assigned.
ifconfig-pool-persist ipp.txt

Configure server mode for ethernet bridging.
You must first use your OS's bridging capability
to bridge the TAP interface with the ethernet
NIC interface. Then you must manually set the
IP/netmask on the bridge interface, here we
assume 10.8.0.4/255.255.255.0. Finally we
must set aside an IP range in this subnet
(start=10.8.0.50 end=10.8.0.100) to allocate
to connecting clients. Leave this line commented
out unless you are ethernet bridging.
server-bridge 192.168.43.1 255.255.255.0 192.168.43.50 192.168.43.100

Configure server mode for ethernet bridging
using a DHCP-proxy, where clients talk
to the OpenVPN server-side DHCP server
to receive their IP address allocation
and DNS server addresses. You must first use
your OS's bridging capability to bridge the TAP
interface with the ethernet NIC interface.
Note: this mode only works on clients (such as
Windows), where the client-side TAP adapter is
bound to a DHCP client.
server-bridge

Push routes to the client to allow it
to reach other private subnets behind
the server. Remember that these
private subnets will also need
to know to route the OpenVPN client
address pool (10.8.0.0/255.255.255.0)
back to the OpenVPN server.
;push "route 192.168.10.0 255.255.255.0"
;push "route 192.168.20.0 255.255.255.0"

To assign specific IP addresses to specific
clients or if a connecting client has a private
subnet behind it that should also have VPN access,
use the subdirectory "ccd" for client-specific
configuration files (see man page for more info).

EXAMPLE: Suppose the client
having the certificate common name "Thelonious"
also has a small subnet behind his connecting
machine, such as 192.168.40.128/255.255.255.248.
First, uncomment out these lines:
;client-config-dir ccd
;route 192.168.40.128 255.255.255.248
Then create a file ccd/Thelonious with this line:
iroute 192.168.40.128 255.255.255.248

www.manaraa.com

84

This will allow Thelonious' private subnet to
access the VPN. This example will only work
if you are routing, not bridging, i.e. you are
using "dev tun" and "server" directives.

EXAMPLE: Suppose you want to give
Thelonious a fixed VPN IP address of 10.9.0.1.
First uncomment out these lines:
;client-config-dir ccd
;route 10.9.0.0 255.255.255.252
Then add this line to ccd/Thelonious:
ifconfig-push 10.9.0.1 10.9.0.2

Suppose that you want to enable different
firewall access policies for different groups
of clients. There are two methods:
(1) Run multiple OpenVPN daemons, one for each
group, and firewall the TUN/TAP interface
for each group/daemon appropriately.
(2) (Advanced) Create a script to dynamically
modify the firewall in response to access
from different clients. See man
page for more info on learn-address script.
;learn-address ./script

If enabled, this directive will configure
all clients to redirect their default
network gateway through the VPN, causing
all IP traffic such as web browsing and
and DNS lookups to go through the VPN
(The OpenVPN server machine may need to NAT
or bridge the TUN/TAP interface to the internet
in order for this to work properly).
push "redirect-gateway def1 bypass-dhcp"

Certain Windows-specific network settings
can be pushed to clients, such as DNS
or WINS server addresses. CAVEAT:
http://openvpn.net/faq.html#dhcpcaveats
The addresses below refer to the public
DNS servers provided by opendns.com.
push "dhcp-option DNS 208.67.222.222"
push "dhcp-option DNS 208.67.220.220"

Uncomment this directive to allow different
clients to be able to "see" each other.
By default, clients will only see the server.
To force clients to only see the server, you
will also need to appropriately firewall the
server's TUN/TAP interface.
;client-to-client

www.manaraa.com

85

Uncomment this directive if multiple clients
might connect with the same certificate/key
files or common names. This is recommended
only for testing purposes. For production use,
each client should have its own certificate/key
pair.

IF YOU HAVE NOT GENERATED INDIVIDUAL
CERTIFICATE/KEY PAIRS FOR EACH CLIENT,
EACH HAVING ITS OWN UNIQUE "COMMON NAME",
UNCOMMENT THIS LINE OUT.
;duplicate-cn

The keepalive directive causes ping-like
messages to be sent back and forth over
the link so that each side knows when
the other side has gone down.
Ping every 10 seconds, assume that remote
peer is down if no ping received during
a 120 second time period.
keepalive 10 120

For extra security beyond that provided
by SSL/TLS, create an "HMAC firewall"
to help block DoS attacks and UDP port flooding.

Generate with:
openvpn --genkey --secret ta.key

The server and each client must have
a copy of this key.
The second parameter should be '0'
on the server and '1' on the clients.
tls-auth ta.key 0 # This file is secret
key-direction 0

Select a cryptographic cipher.
This config item must be copied to
the client config file as well.
Note that 2.4 client/server will automatically
negotiate AES-256-GCM in TLS mode.
See also the ncp-cipher option in the manpage
cipher AES-256-CBC
auth SHA256

Enable compression on the VPN link and push the
option to the client (2.4+ only, for earlier
versions see below)
;compress lz4-v2
;push "compress lz4-v2"

For compression compatible with older clients use comp-lzo

www.manaraa.com

86

If you enable it here, you must also
enable it in the client config file.
;comp-lzo

The maximum number of concurrently connected
clients we want to allow.
;max-clients 100

It's a good idea to reduce the OpenVPN
daemon's privileges after initialization.

You can uncomment this out on
non-Windows systems.
user nobody
group nogroup

The persist options will try to avoid
accessing certain resources on restart
that may no longer be accessible because
of the privilege downgrade.
persist-key
persist-tun

Output a short status file showing
current connections, truncated
and rewritten every minute.
status openvpn-status.log

By default, log messages will go to the syslog (or
on Windows, if running as a service, they will go to
the "\Program Files\OpenVPN\log" directory).
Use log or log-append to override this default.
"log" will truncate the log file on OpenVPN startup,
while "log-append" will append to it. Use one
or the other (but not both).
;log openvpn.log
;log-append openvpn.log

Set the appropriate level of log
file verbosity.

0 is silent, except for fatal errors
4 is reasonable for general usage
5 and 6 can help to debug connection problems
9 is extremely verbose
verb 3

Silence repeating messages. At most 20
sequential messages of the same message
category will be output to the log.
;mute 20

www.manaraa.com

87

Notify the client that when the server restarts so it
can automatically reconnect.
explicit-exit-notify 1

A.3 /etc/sysctl.conf

/etc/sysctl.conf - Configuration file for setting system variables
See /etc/sysctl.d/ for additional system variables.
See sysctl.conf (5) for information.

#kernel.domainname = example.com

Uncomment the following to stop low-level messages on console
#kernel.printk = 3 4 1 3

##3
Functions previously found in netbase

Uncomment the next two lines to enable Spoof protection (reverse-
path filter)
Turn on Source Address Verification in all interfaces to
prevent some spoofing attacks
#net.ipv4.conf.default.rp_filter=1
#net.ipv4.conf.all.rp_filter=1

Uncomment the next line to enable TCP/IP SYN cookies
See http://lwn.net/Articles/277146/
Note: This may impact IPv6 TCP sessions too
#net.ipv4.tcp_syncookies=1

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6
Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host
#net.ipv6.conf.all.forwarding=1

Additional settings - these settings can improve the network
security of the host and prevent against some network attacks
including spoofing attacks and man in the middle attacks through
redirection. Some network environments, however, require that these
settings are disabled so review and enable them as needed.

Do not accept ICMP redirects (prevent MITM attacks)
#net.ipv4.conf.all.accept_redirects = 0

www.manaraa.com

88

#net.ipv6.conf.all.accept_redirects = 0
or
Accept ICMP redirects only for gateways listed in our default
gateway list (enabled by default)
net.ipv4.conf.all.secure_redirects = 1

Do not send ICMP redirects (we are not a router)
#net.ipv4.conf.all.send_redirects = 0

Do not accept IP source route packets (we are not a router)
#net.ipv4.conf.all.accept_source_route = 0
#net.ipv6.conf.all.accept_source_route = 0

Log Martian Packets
#net.ipv4.conf.all.log_martians = 1

Magic system request Key
0=disable, 1=enable all
Debian kernels have this set to 0 (disable the key)
See https://www.kernel.org/doc/Documentation/sysrq.txt
for what other values do
#kernel.sysrq=1

Protected links

Protects against creating or following links under certain
conditions
Debian kernels have both set to 1 (restricted)
See https://www.kernel.org/doc/Documentation/sysctl/fs.txt
#fs.protected_hardlinks=0
#fs.protected_symlinks=0

A.4 /usr/share/doc/openvpn/examples/sample-script/bridge-start

#!/bin/bash

#################################
Set up Ethernet bridge on Linux
Requires: bridge-utils
#################################

Define Bridge Interface
br="br0"

Define list of TAP interfaces to be bridged,
for example tap="tap0 tap1 tap2".
tap="tap0"

www.manaraa.com

89

Define physical ethernet interface to be bridged
with TAP interface(s) above.
eth="eth0"
eth_ip="192.168.43.1"
eth_netmask="255.255.255.0"
eth_broadcast="192.168.43.255"

for t in $tap; do
 openvpn --mktun --dev $t
done

brctl addbr $br
brctl addif $br $eth

for t in $tap; do
 brctl addif $br $t
done

for t in $tap; do
 ifconfig $t 0.0.0.0 promisc up
done

ifconfig $eth 0.0.0.0 promisc up

ifconfig $br $eth_ip netmask $eth_netmask broadcast $eth_broadcast

A.5 /etc/ufw/before.rules

rules.before

Rules that should be run before the ufw command line added rules.
Custom
rules should be added to one of these chains:
ufw-before-input
ufw-before-output
ufw-before-forward

START OPENVPN RULES
NAT table rules
*nat
:POSTROUTING ACCEPT [0:0]
Allow traffic from OpenVPN client to ens160 (change to the interface
you discovered)
-A POSTROUTING -s 192.168.43.0/8 -o ens160 -j MASQUERADE
COMMIT
END OPENVPN RULES

Don't delete these required lines, otherwise there will be errors
*filter

www.manaraa.com

90

:ufw-before-input - [0:0]
:ufw-before-output - [0:0]
:ufw-before-forward - [0:0]
:ufw-not-local - [0:0]
End required lines

allow all on loopback
-A ufw-before-input -i lo -j ACCEPT
-A ufw-before-output -o lo -j ACCEPT

quickly process packets for which we already have a connection
-A ufw-before-input -m conntrack --ctstate RELATED,ESTABLISHED -j
ACCEPT
-A ufw-before-output -m conntrack --ctstate RELATED,ESTABLISHED -j
ACCEPT
-A ufw-before-forward -m conntrack --ctstate RELATED,ESTABLISHED -j
ACCEPT

drop INVALID packets (logs these in loglevel medium and higher)
-A ufw-before-input -m conntrack --ctstate INVALID -j ufw-logging-deny
-A ufw-before-input -m conntrack --ctstate INVALID -j DROP

ok icmp codes for INPUT
-A ufw-before-input -p icmp --icmp-type destination-unreachable -j
ACCEPT
-A ufw-before-input -p icmp --icmp-type source-quench -j ACCEPT
-A ufw-before-input -p icmp --icmp-type time-exceeded -j ACCEPT
-A ufw-before-input -p icmp --icmp-type parameter-problem -j ACCEPT
-A ufw-before-input -p icmp --icmp-type echo-request -j ACCEPT

ok icmp code for FORWARD
-A ufw-before-forward -p icmp --icmp-type destination-unreachable -j
ACCEPT
-A ufw-before-forward -p icmp --icmp-type source-quench -j ACCEPT
-A ufw-before-forward -p icmp --icmp-type time-exceeded -j ACCEPT
-A ufw-before-forward -p icmp --icmp-type parameter-problem -j ACCEPT
-A ufw-before-forward -p icmp --icmp-type echo-request -j ACCEPT

allow dhcp client to work
-A ufw-before-input -p udp --sport 67 --dport 68 -j ACCEPT

ufw-not-local

-A ufw-before-input -j ufw-not-local

if LOCAL, RETURN
-A ufw-not-local -m addrtype --dst-type LOCAL -j RETURN

if MULTICAST, RETURN
-A ufw-not-local -m addrtype --dst-type MULTICAST -j RETURN

www.manaraa.com

91

if BROADCAST, RETURN
-A ufw-not-local -m addrtype --dst-type BROADCAST -j RETURN

all other non-local packets are dropped
-A ufw-not-local -m limit --limit 3/min --limit-burst 10 -j ufw-
logging-deny
-A ufw-not-local -j DROP

allow MULTICAST mDNS for service discovery (be sure the MULTICAST
line above
is uncommented)
-A ufw-before-input -p udp -d 224.0.0.251 --dport 5353 -j ACCEPT

allow MULTICAST UPnP for service discovery (be sure the MULTICAST
line above
is uncommented)
-A ufw-before-input -p udp -d 239.255.255.250 --dport 1900 -j ACCEPT

don't delete the 'COMMIT' line or these rules won't be processed
COMMIT

A.6 client1.opvn

Sample client-side OpenVPN 2.0 config file #
for connecting to multi-client server. #

This configuration can be used by multiple #
clients, however each client should have #
its own cert and key files. #

On Windows, you might want to rename this #
file so it has a .ovpn extension #

Specify that we are a client and that we
will be pulling certain config file directives
from the server.
client

Use the same setting as you are using on
the server.
On most systems, the VPN will not function
unless you partially or fully disable
the firewall for the TUN/TAP interface.
dev tap
;dev tun

Windows needs the TAP-Win32 adapter name
from the Network Connections panel
if you have more than one. On XP SP2,

www.manaraa.com

92

you may need to disable the firewall
for the TAP adapter.
;dev-node MyTap

Are we connecting to a TCP or
UDP server? Use the same setting as
on the server.
;proto tcp
proto udp

The hostname/IP and port of the server.
You can have multiple remote entries
to load balance between the servers.
remote 192.168.42.2 1194
;remote my-server-2 1194

Choose a random host from the remote
list for load-balancing. Otherwise
try hosts in the order specified.
;remote-random

Keep trying indefinitely to resolve the
host name of the OpenVPN server. Very useful
on machines which are not permanently connected
to the internet such as laptops.
resolv-retry infinite

Most clients don't need to bind to
a specific local port number.
nobind

Downgrade privileges after initialization (non-Windows only)
user nobody
group nogroup

Try to preserve some state across restarts.
persist-key
persist-tun

If you are connecting through an
HTTP proxy to reach the actual OpenVPN
server, put the proxy server/IP and
port number here. See the man page
if your proxy server requires
authentication.
;http-proxy-retry # retry on connection failures
;http-proxy [proxy server] [proxy port #]

Wireless networks often produce a lot
of duplicate packets. Set this flag
to silence duplicate packet warnings.
;mute-replay-warnings

www.manaraa.com

93

SSL/TLS parms.
See the server config file for more
description. It's best to use
a separate .crt/.key file pair
for each client. A single ca
file can be used for all clients.
#ca ca.crt
#cert client.crt
#key client.key

Verify server certificate by checking that the
certicate has the correct key usage set.
This is an important precaution to protect against
a potential attack discussed here:
http://openvpn.net/howto.html#mitm

To use this feature, you will need to generate
your server certificates with the keyUsage set to
digitalSignature, keyEncipherment
and the extendedKeyUsage to
serverAuth
EasyRSA can do this for you.
remote-cert-tls server

If a tls-auth key is used on the server
then every client must also have the key.
;tls-auth ta.key 1

Select a cryptographic cipher.
If the cipher option is used on the server
then you must also specify it here.
cipher AES-256-CBC
auth SHA256

Enable compression on the VPN link.
Don't enable this unless it is also
enabled in the server config file.
;comp-lzo

Set log file verbosity.
verb 3

Silence repeating messages
;mute 20

key-direction 1

script-security 2
up /etc/openvpn/update-resolve-conf
down /etc/openvpn/update-resolve-conf

www.manaraa.com

94

A.7 ~/client-configs/make_config.sh

#!/bin/bash

First argument: Client identifier

KEY_DIR=~/openvpn-ca/keys

OUTPUT_DIR=~/client-configs/files

BASE_CONFIG=~/client-configs/base.conf

cat ${BASE_CONFIG} \

 <(echo -e '<ca>') \

 ${KEY_DIR}/ca.crt \

 <(echo -e '</ca>\n<cert>') \

 ${KEY_DIR}/${1}.crt \

 <(echo -e '</cert>\n<key>') \

 ${KEY_DIR}/${1}.key \

 <(echo -e '</key>\n<tls-auth>') \

 ${KEY_DIR}/ta.key \

 <(echo -e '</tls-auth>') \
 > ${OUTPUT_DIR}/${1}.ovpn

www.manaraa.com

95

APPENDIX B. SECURITY ONION /ETC/NETWORK/INTERFACES FILE

This configuration was created by the Security Onion setup script.

The original network interface configuration file was backed up to:

/etc/network/interfaces.bak.

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

loopback network interface

auto lo

iface lo inet loopback

Management network interface

auto eth0

iface eth0 inet static

 address 192.168.230.105

www.manaraa.com

96

 gateway 192.168.230.1

 netmask 255.255.255.0

 dns-nameservers 8.8.8.8 8.8.4.4

 dns-domain csrl-seconion

auto eth1

iface eth1 inet manual

 up ip link set eth1 promisc on arp off up

 down ip link set eth1 promisc off down

 post-up ethtool -G eth1 rx ; for i in rx tx sg tso ufo gso gro lro;

do ethtool -K

 post-up echo 1 > /proc/sys/net/ipv6/conf/eth1/disable_ipv6

auto eth2

iface eth2 inet manual

 up ip link set eth2 promisc on arp off up

 down ip link set eth2 promisc off down

 post-up ethtool -G eth2 rx ; for i in rx tx sg tso ufo gso gro lro;

do ethtool -K

 post-up echo 1 > /proc/sys/net/ipv6/conf/eth2/disable_ipv6

www.manaraa.com

97

auto br0

iface br0 inet manual

 bridge_ports eth1 eth2

 up ip link set br0 promisc on arp off up

 down ip link set br0 promisc off down

 post-up ethtool -G br0 rx ; for i in rx tx sg tso ufo gso gro lro;

do ethtool -K

 post-up echo 1 > /proc/sys/net/ipv6/conf/br0/disable_ipv6

	Brigham Young University
	BYU ScholarsArchive
	2018-06-01

	A Framework for the Performance Analysis and Tuning of Virtual Private Networks
	Fridrich Shane Perez
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Background & Motivation
	1.2 Objectives / Goals
	1.3 Problem Statement / Hypotheses
	1.4 Methodology
	1.5 Delimitations / Assumptions
	1.6 Glossary

	2 Literature Review
	2.1 VPN Security Protocols
	2.2 VPN Applications
	2.3 Commodity Hardware & Frameworks
	2.4 Performance Testing
	2.5 Encryption Algorithms

	3 Methodology
	3.1 RO-1: Framework Development and Testing
	3.1.1 Network Performance Testing
	3.1.2 Network Measuring Tools
	3.1.3 Framework Arrangement

	3.2 RQ-2: Determining Differences
	3.2.1 Network Traffic Monitoring
	3.2.2 VPN Infrastructure Settings

	3.3 RH-2: Bandwidth Differences
	3.3.1 Device Information
	3.3.2 Tuning Factors

	4 Results & Analysis
	4.1 Data Collection
	4.1.1 Fixed Transfer Bandwidth
	4.1.2 Windows Client Results
	4.1.3 Mac Client Results
	4.1.4 Android Client Results

	4.2 Framework Analysis
	4.2.1 Limitations
	4.2.2 VPN Traffic Explanation
	4.2.3 FIPS Application
	4.2.4 Framework Validation

	5 Conclusion & Future Work
	5.1 Future Research
	5.1.1 Linux Involvement
	5.1.2 Automated Tests

	5.2 Observations

	References
	Appendix A. OpenVPN Server Configured Files
	A.1 ~/openvpn-ca/vars
	A.2 /etc/openvpn/server.conf
	A.3 /etc/sysctl.conf
	A.4 /usr/share/doc/openvpn/examples/sample-script/bridge-start
	A.5 /etc/ufw/before.rules
	A.6 client1.opvn
	A.7 ~/client-configs/make_config.sh

	Appendix B. Security Onion /etc/network/interfaces File

